IJAR.2025.263

Type of Article:  Original Research

Volume 13; Issue 4 (December 2025)

Page No.: 9395-9412

DOI: https://dx.doi.org/10.16965/ijar.2025.263

The Possible Protective Effect of Vitamin E and Melatonin on Cyclophosphamide-Induced Ovarian Failure in Adult Female C57BL/6 Mice: Histological and Immunohistochemical Study

Melad N. Kelada *1,2, Elsayed Aly Mohamed Metwally 1, Reham Abelfatah Menesy 1, Inass Ibrahim Zaki 3, Heba G. Ibrahim 4, Mohamed Gamal Ayoub 1,5.

*1 Human Anatomy and Embryology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.

2 Department of Human Anatomy and Embryology, Beirut Arab University, Beirut, Lebanon.

3 Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.

4 Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.

5 Anatomy Department, Faculty of Medicine, Galala University, Suez, Egypt.

Corresponding Author: Dr Melad N. Kelada, Human Anatomy and Embryology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt. E-Mail: melad.bushra@alexmed.edu.eg; m.kelada@bau.edu.lb ORCiD: 0000-0001-9065-4523

ABSTRACT

Background: Cyclophosphamide has a toxic effect on the ovaries and may induce ovarian failure.  Premature ovarian failure (POF) is a common condition that stands for cessation of the ovarian functions in women before the age of 40 years. Vitamin E shows antioxidant features that can protect ovary from toxicity of cyclophosphamide. Melatonin is known for having antioxidant features that help ovary to restore its normal structure.

Purpose: Study the potential protective role of co-administration of vitamin E and melatonin on the ovarian structure in cyclophosphamide induced ovarian failure.

Materials and Methods: The mice were divided into 5 groups (group I: control group that received orally distilled water and olive oil. group II: cyclophosphamide group (75 mg/kg/day, intraperitoneally), group III: cyclophosphamide+ vitamin E group (200 mg/kg/day, by orogastric tube), group IV: cyclophosphamide+ melatonin group (50 mg/kg/day, by orogastric tube), group V: cyclophosphamide+ vitamin E+ melatonin group. The ovarian sections were examined histologically and immunohistochemically. 

Results: Ovaries of cyclophosphamide+ vitamin E group and cyclophosphamide+ melatonin group had partial improvement in the ovarian structure with reappearance of follicles at different stages of development, partial regression in the extent of cortical fibrosis and moderate decrease in immunohistochemical reaction against caspase-3 compared to cyclophosphamide group. Ovaries of cyclophosphamide+ vitamin E+ melatonin group showed restoration of  nearly normal structure with normal appearance of follicles, zona pellucida and minimal cortical collagen deposition. Morphometric studies of the cyclophosphamide+ vitamin E+ melatonin group revealed a marked increase in follicle count, diameter and ovarian diameter with a decrease in collagen fibers deposition.

Conclusion: A Combination of vitamin E and melatonin with cyclophosphamide helps to preserve the ovary and restore normal ovarian structure in comparison to the use of vitamin E or melatonin alone.

Key words: C57BL/6 mice – caspase reaction – cyclophosphamide – follicles -melatonin – morphometric – premature ovarian failure – vitamin E.

REFERENCES

[1]. Rosario R, Stewart HL, Spears N, Telfer EE, Anderson RA. Anti-Mullerian hormone attenuates both cyclophosphamide-induced damage and PI3K signalling activation, while rapamycin attenuates only PI3K signalling activation, in human ovarian cortex in vitro. Human Reproduction. 2024 Feb 1;39(2):382-92.
https://doi.org/10.1093/humrep/dead255
PMid:38070496 PMCid:PMC10833070
[2]. Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank. 2023 Apr;21(2):121-141. doi: 10.1089/bio.2021.0159. Epub 2022 Jun 13. PMID: 35696235.
https://doi.org/10.1089/bio.2021.0159
PMid:35696235
[3]. Bhardwaj JK, Bikal P, Sachdeva SN. Chemotherapeutic drugs induced female reproductive toxicity and treatment strategies. Journal of Biochemical and Molecular Toxicology. 2023 Jul;37(7):e23371.
https://doi.org/10.1002/jbt.23371
PMid:37098697
[4]. Busuioc RE, Paduraru DN, Alexandra Stanescu AM, Barbalata DC, Musat F, Albu AR, et al. Regenerative medicine options in treating premature ovarian failure. Romanian Medical Journal. 2023 Jan 1;70(1).
https://doi.org/10.37897/RMJ.2023.1.9
[5]. Chon SJ, Umair Z, Yoon MS. Premature ovarian insufficiency: past, present, and future. Frontiers in cell and developmental biology. 2021 May 10; 9:672890.
https://doi.org/10.3389/fcell.2021.672890
PMid:34041247 PMCid:PMC8141617
[6]. Rahman R, Panay N. Diagnosis and management of premature ovarian insufficiency. Best Practice & Research Clinical Endocrinology & Metabolism. 2021 Dec 1;35(6):101600.
https://doi.org/10.1016/j.beem.2021.101600
PMid:34823999
[7]. Vo KC, Kawamura K. In vitro activation early follicles: from the basic science to the clinical perspectives. International Journal of Molecular Sciences. 2021 Apr 6;22(7):3785.
https://doi.org/10.3390/ijms22073785
PMid:33917468 PMCid:PMC8038686
[8]. Li Z, Zhang M, Tian Y, Li Q, Huang X. Mesenchymal stem cells in premature ovarian insufficiency: Mechanisms and prospects. Front Cell Dev Biol 2021; 9:718192.
https://doi.org/10.3389/fcell.2021.718192
PMid:34414193 PMCid:PMC8369507
[9]. Cemali Ö, Akdevelioğlu Y. Female infertility and the Mediterranean Diet. Journal of Gazi University Health Sciences Institute. 2022;4(2):96-106.
[10]. Mansour-Gueddes SB, Saidana-Naija D. Vitamin E: natural antioxidant in the Mediterranean diet. Vitam. E Health Dis.-Interact. Dis. Health Asp. 2021 Oct 6;10.
https://doi.org/10.5772/intechopen.99705
[11]. Megha KB, Arathi A, Shikha S, Alka R, Ramya P, Mohanan PV. Significance of melatonin in the regulation of circadian rhythms and disease management. Molecular Neurobiology. 2024 Jan 11:1-31.
https://doi.org/10.1007/s12035-024-03915-0
PMid:38206471
[12]. Savage RA, Zafar N, Yohannan S, Miller JMM. Melatonin. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022.
[13]. Alexandria University. Regulatory framework in ethics of animal research. 2018. Available from: http://www.alexu.edu.eg/index.php/en/research/4401-regulatory-framework-in-ethics-of-animal-research. [Accessed in: Aug, 2023].
[14]. Safwat M, Elagwany AM, Abd El Mottelib LM, Zahran NM. Effect of platelet-rich plasma in cyclophosphamide-induced ovarian failure in albino rats: histological and anatomical study. Egypt J Histol 2022; 45:597-618.
[15]. Raeeszadeh M, Shokrollahi B, Khademi N, Akbari A. Superior effect of broccoli methanolic extract on control of oxidative damage of sperm cryopreservation and reproductive performance in rats: A comparison with vitamin C and E antioxidant. Theriogenology 2022; 181:50-8.
https://doi.org/10.1016/j.theriogenology.2022.01.010
PMid:35063921
[16]. Liu Y, Li LN, Guo S, Zhao XY, Liu YZ, Liang C, et al. Melatonin improves cardiac function in a mouse model of heart failure with preserved ejection fraction. Redox Biol 2018; 18:211-21.
https://doi.org/10.1016/j.redox.2018.07.007
PMid:30031269 PMCid:PMC6076208
[17]. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006; 29;441(7097):1109-14.
https://doi.org/10.1038/nature04929
PMid:16799565
[18]. Gunasegaran JP. Textbook of Histology and A Practical guide, 4e-E-book. Elsevier Health Sciences; 2020 Mar 14.
[19]. Rasmussen R. Tissue acquisition and processing. InMethods in Inhalation Toxicology 2020 Apr 30 (pp. 101-123). CRC Press.
https://doi.org/10.1201/9780429332852-7
[20]. Hasic E. Immunohistochemistry Fundamentals. Immunohistochemistry: A Technical Guide to Current Practices. 2022 Jul 7:1.
https://doi.org/10.1017/9781009106924.002
[21]. Sprent P. Data driven statistical methods. Routledge; 2019 Dec 6.
https://doi.org/10.1201/9781315140780
[22]. Abdoon AS, Al-Atrash AM, Soliman SS, El-Sanea AM, Gamal el Din AA, Fahmy HM. Lyophilized equine platelet-rich plasma (L-GFequina) antagonize the Reproductive toxicity and oxidative stress Induced by Cyclophosphamide in female rats. Journal of Ovarian Research. 2023 Apr 28;16(1):84.
https://doi.org/10.1186/s13048-023-01161-x
PMid:37118826 PMCid:PMC10141944
[23]. Zarei S, Molavi F, Abasnezhad FA, Majidi B, Mohammadihosseinabad S, Ranjbar FE, et al. The effects of vitamin E supplementation on sperm parameters, chromatin integrity, and gene expression before and after freezing in aged mice. Korean Journal of Fertility and Sterility. 2024 Jan 30.
https://doi.org/10.5653/cerm.2023.06632
PMid:38853131 PMCid:PMC11372309
[24]. Sargazi Z, Nikravesh MR, Jalali M, Sadeghnia HR, Rahimi Anbarkeh F, Mohammadzadeh L. Diazinon-induced ovarian toxicity and protection by vitamins E. Iran J Toxicol 2014;8:1130-5.
[25]. Al-Salih HA, Al-Sharafi NM, Al-Qabi SS, Al-Darwesh AA. The Pathological Features of cyclophosphamide induced multi-organs toxicity in male wister rats. Systematic Reviews in Pharmacy. 2020 Jun 1;11(6):45-9.
https://doi.org/10.31838/srp.2020.6.10
[26]. Adrian PH, Hunisand M, Lipovestky F. Nutrition in the Patient with Cancer Clinical Physiological and Therapeutic Aspects. Int J Cancer Res Ther, 6 (2): 49. 2021;61.
https://doi.org/10.33140/IJCRT.06.02.11
[27]. Onaolapo AY, Ojo FO, Onaolapo OJ. Biflavonoid quercetin protects against cyclophosphamide-induced organ toxicities via modulation of inflammatory cytokines, brain neurotransmitters, and astrocyte immunoreactivity. Food and chemical toxicology. 2023 Aug 1; 178:113879.
https://doi.org/10.1016/j.fct.2023.113879
PMid:37301500
[28]. Alshahrani S, Ali Thubab HM, Ali Zaeri AM, Anwer T, Ahmed RA, Jali AM, et al. The protective effects of sesamin against cyclophosphamide-induced nephrotoxicity through modulation of oxidative stress, inflammatory-cytokines and apoptosis in rats. International Journal of Molecular Sciences. 2022 Oct 1;23(19):11615.
https://doi.org/10.3390/ijms231911615
PMid:36232918 PMCid:PMC9569534
[29]. Barberino RS, Lins TL, Monte AP, Silva RL, Andrade KO, Campinho DS, Junior RC, Smitz JE, Matos MH. Epigallocatechin-3-gallate attenuates cyclophosphamide-induced damage in mouse ovarian tissue via suppressing inflammation, apoptosis, and expression of phosphorylated Akt, FOXO3a and rpS6. Reproductive Toxicology. 2022 Oct 1; 113:42-51.
https://doi.org/10.1016/j.reprotox.2022.08.010
PMid:35981663
[30]. Abogresha NM, Mohammed SS, Hosny MM, Abdallah HY, Gadallah AM, Greish SM. Diosmin mitigates cyclophosphamide induced premature ovarian insufficiency in rat model. Int J Mol Sci 2021; 22:3044.
https://doi.org/10.3390/ijms22063044
PMid:33802633 PMCid:PMC8002508
[31]. İpek E, Hesapçıoğlu M, Karaboğa M, Avcı H. Selenium protection from DNA damage and regulation of apoptosis signaling following cyclophosphamide induced cardiotoxicity in rats. Biotechnic & Histochemistry. 2023 Oct 3;98(7):534-42.
https://doi.org/10.1080/10520295.2023.2253424
PMid:37695070
[32]. Yaeger MJ. Pathology of the Female Reproductive System. Atlas of Veterinary Surgical Pathology. 2023 Mar 17:178-98.
https://doi.org/10.1002/9781119261254.ch5
[33]. Adeyemi DH, Hamed MA, Oluwole DT, Omole AI, Akhigbe RE. Acetate attenuates cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of caspase 3-dependent apoptosis in Wistar rats. Biomedicine & Pharmacotherapy. 2024 Jan 1; 170:116019.
https://doi.org/10.1016/j.biopha.2023.116019
PMid:38128178
[34]. Liu T, Wang S, Li Q, Huang Y, Chen C, Zheng J. Telocytes as potential targets in a cyclophosphamide-induced animal model of premature ovarian failure. Mol Med Rep 2016; 14:2415-22.
https://doi.org/10.3892/mmr.2016.5540
PMid:27485835 PMCid:PMC4991733
[35]. Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers. 2024 Jan;16(12):2288.
https://doi.org/10.3390/cancers16122288
PMid:38927992 PMCid:PMC11202309
[36]. Amalia A, Hendarto H, Mustika A, Susanti I. Effects of Nigella Sativa on Female Infertility: A Systematic Review. InProceedings of the 6th International Conference on Medical and Health Informatics 2022 May 13 (pp. 234-237).
https://doi.org/10.1145/3545729.3545776
[37]. Ermiş M, Karaman E, Yalçın B, Aygen EM. An evaluation of the effects on the ovaries of hyperbaric oxygen therapy in a rat model of premature ovarian failure created with cyclophosphamide. Turk J Obstet Gynecol. 2023; 20:46-52.
https://doi.org/10.4274/tjod.galenos.2023.47817
PMid:36908093 PMCid:PMC10013088
[38]. Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Human Reproduction Update. 2024 Sep;30(5):614-47.
https://doi.org/10.1093/humupd/dmae020
PMid:38942605 PMCid:PMC11369228
[39]. Kim J, You S. Extended adverse effects of cyclophosphamide on mouse ovarian function. BMC Pharmacol Toxicol 2021; 22:3.
https://doi.org/10.1186/s40360-020-00468-5
PMid:33413693 PMCid:PMC7792169
[40]. Haliciu AM, Strat L, Amihaesei C, Stan CI, Zamfir AS, Folescu R, Zamfir CL. Antioxidant effect of vitamin e on cyclophosphamide-induced oxidative stress in female rats. Romanian Journal of Functional & Clinical, Macro & Microscopical Anatomy & of Anthropology/Revista Româna de Anatomie Functionala si Clinica, Macro si Microscopica si de Antropologie; 2016;15:161.
[41]. Raeeszadeh M, Saleh Hosseini SM, Amiri AA. Impact of co-administration of N-Acetylcysteine and vitamin E on cyclophosphamide-induced ovarian toxicity in female rats. J Toxicol 2022; 2022:9073405.
https://doi.org/10.1155/2022/9073405
PMid:36051383 PMCid:PMC9427260
[42]. Jiang Q, Im S, Wagner JG, Hernandez ML, Peden DB. Gamma-tocopherol, a major form of vitamin E in diets: Insights into antioxidant and anti-inflammatory effects, mechanisms, and roles in disease management. Free Radical Biology and Medicine. 2022 Jan 1; 178:347-59.
https://doi.org/10.1016/j.freeradbiomed.2021.12.012
PMid:34896589 PMCid:PMC8826491
[43]. Du R, Cheng X, Ji J, Lu Y, Xie Y, Wang W, et al. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Sci Rep 2023; 13:4463.
https://doi.org/10.1038/s41598-023-31712-7
PMid:36932163 PMCid:PMC10023701
[44]. Sezer Z, Yilmaz TE, Gungor ZB, Kalay F, Guzel E. Effects of vitamin E on nicotine-induced lipid peroxidation in rat granulosa cells: Folliculogenesis. Reproductive Biology. 2020 Mar 1;20(1):63-74.
https://doi.org/10.1016/j.repbio.2019.12.004
PMid:31918980
[45]. Ebrahim NA, Abdalla HA, Yassin NAE, Maghrabia AE, Morsy AI. Effect of Sofosbuvir on rats’ ovaries and the possible protective role of vitamin E: biochemical and immunohistochemical study. Anat Cell Biol 2023; 56:526-37.
https://doi.org/10.5115/acb.23.079
PMid:37654017 PMCid:PMC10714087
[46]. Xu H, Bao X, Kong H, Yang J, Li Y, Sun Z. Melatonin Protects Against Cyclophosphamide-induced Premature Ovarian Failure in Rats. Hum Exp Toxicol. 2022 Jan-Dec; 41:9603271221127430.
https://doi.org/10.1177/09603271221127430
PMid:36154502
[47]. Barberino RS, Lins TLBG, Monte APO, Gouveia BB, Campinho DSP, Palheta RC Jr, et al. Melatonin attenuates cyclophosphamide-induced primordial follicle loss by interaction with MT1 receptor and modulation of PTEN/Akt/FOXO3a proteins in the mouse ovary. Reprod Sci 2022;29:2505-14.
https://doi.org/10.1007/s43032-021-00768-z
PMid:34642909
[48]. Feng J, Ma WW, Li HX, Pei XY, Deng SL, Jia H, et al. Melatonin prevents cyclophosphamide-induced primordial follicle loss by inhibiting ovarian granulosa cell apoptosis and maintaining AMH expression. Front Endocrinol (Lausanne) 2022; 13:895095.
https://doi.org/10.3389/fendo.2022.895095
PMid:35992124 PMCid:PMC9381702
[49]. Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacological Reports. 2024 Feb;76(1):25-50.
https://doi.org/10.1007/s43440-023-00554-5
PMid:37995089
[50]. Goktepe O, Balcioglu E, Baran M, Cengiz O, Ceyhan A, Suna PA, et al. Protective effects of melatonin on female rat ovary treated with nonylphenol. Biotech Histochem 2023; 98:13-9.
https://doi.org/10.1080/10520295.2022.2075566
PMid:35611760
[51]. Al-Shahat A, Hulail MAE, Soliman NMM, Khamis T, Fericean LM, Arisha AH, et al. Melatonin mitigates cisplatin-induced ovarian dysfunction via altering steroidogenesis, inflammation, apoptosis, oxidative stress, and PTEN/PI3K/Akt/mTOR/AMPK signaling pathway in female rats. Pharmaceutics 2022; 14:2769.
https://doi.org/10.3390/pharmaceutics14122769
PMid:36559263 PMCid:PMC9786155
[52]. Mallamaci R, Barbarossa A, Carrieri A, Meleleo D, Carocci A. Evaluation of the Potential Cytoprotective Effect of Melatonin in Comparison with Vitamin E and Trolox against Cd2+-Induced Toxicity in SH-SY5Y, HCT 116, and HepG2 Cell Lines. Int J Mol Sci. 2024 Jul 24;25(15):8055.
https://doi.org/10.3390/ijms25158055
PMid:39125623 PMCid:PMC11312335
[53]. Oyagbemi AA, Ajibade TO, Esan OO, Adetona MO, Awoyomi OV, Omobowale TO, et al. Cardioprotective and renoprotective effects of melatonin and vitamin E on fluoride-induced hypertension and renal dysfunction in rats. Comparative Clinical Pathology. 2024 Feb;33(1):33-45.
https://doi.org/10.1007/s00580-023-03519-5
[54]. Demir K, Caliskan ST, Celik S, Akdeniz M, Goc RY. The effect of Folic Acid, B12, D, and E Vitamins and Melatonin levels in the follicular fluid taken by the Intracytoplasmic Sperm Injection method on pregnancy. Pakistan Journal of Medical Sciences. 2024 Jan;40(3Part-II):433.
https://doi.org/10.12669/pjms.40.3.7929
PMid:38356841 PMCid:PMC10862457
[55]. Aykutoglu G, Tartik M, Darendelioglu E, Ayna A, Baydas G. Melatonin and vitamin E alleviate homocysteine‐induced oxidative injury and apoptosis in endothelial cells. Molecular Biology Reports. 2020 Jul; 47:5285-93.
https://doi.org/10.1007/s11033-020-05607-z
PMid:32592115
[56]. Erdemli ME, Zayman E, Erdemli Z, Gul M, Gul S, Gozukara Bag H. Protective effects of melatonin and vitamin E in acetamiprid-induced nephrotoxicity. Environmental Science and Pollution Research. 2020 Mar; 27:9202-13.
https://doi.org/10.1007/s11356-019-06754-y
PMid:31916150
[57]. Rashad S, Ahmed S, El-Sayed M, Ahmed D. The toxic effect of bisphenol a on albino rat testicles and the possible protective value of vitamin e and melatonin. Egyptian Society of Clinical Toxicology Journal. 2021 Dec 1;9(2):1-2.
https://doi.org/10.21608/esctj.2021.63294.1001

Cite this article: Melad N. Kelada, Elsayed Aly Mohamed Metwally, Reham Abelfatah Menesy, Inass Ibrahim Zaki, Heba G. Ibrahim, Mohamed Gamal Ayoub. The Possible Protective Effect of Vitamin E and Melatonin on Cyclophosphamide-Induced Ovarian Failure in Adult Female C57BL/6 Mice: Histological and Immunohistochemical Study. Int J Anat Res 2025;13(4):9395-9412. DOI: 10.16965/ijar.2025.263