Type of Article:  Original Research

Volume 9; Issue 4 (December 2021)

Page No.: 8133-8138

DOI: https://dx.doi.org/10.16965/ijar.2021.169

3D Digital Imagery a Solution for the Teaching of Osteology: Example of the Thoracic cage

Mar N B 1, Seye Ch 2, Yacouba Garba K 3, Niang I 4, Seck I D 3, Sahoun M 4, Ba S 4, Ndoye JM 3, Ndiaye A 3, Niang E H 5, Diop A N 6, Ndiaye As 7.

*1 Anatomy laboratory, Iba Der THIAM University of Thiès.

2 Anatomy laboratory, Alioune DIOP University of Bambey.

3 Anatomy and Organogenesis Laboratory, FMPO, UCAD.

4 Radiology Department of Fann Hospital.

5 Radiology Department of Aristide Le Dantec Hospital of Dakar.

6 Radiology Department of Gaston Berger University, Saint Louis, Sénégal.

7 Anatomy laboratory, Assane SECK University of Ziguinchor.

Corresponding Author : Dr. Ndeye Bigue MAR, Anatomy laboratory, Iba Der THIAM University of Thiès. E-Mail: biguemarmbaye@yahoo.fr        


Osteology is a fundamental discipline, its classical teaching becomes difficult because of plethora of students and shortage of bony parts. It’s in this context that we have made, from 3D volume imaging, a modeling of the rib cage as a test using a software for post-treatment of CT images in order to propose a pedagogical tool for studying thorax’s skeletal and adding descriptions with the help of classical works.

This was a prospective study involving 27 patients aged between 35 and 45 years. The scanners used were HITACHI ECLOS 16 cuts. Once the CT scan was selected, the DICOM data was transmitted to the post-processing console. The images were processed on the console “Aquarius Intuition Edition Version 4. 4. 7. 855113”, for one patient we used Veiwer Osirix 10.6.8 Mac.

All bones have been dynamically described thanks to the volume rendering. We thus obtained volumetric reconstructions of three-dimensional CT images of the different bone structures superimposed on those taught in classical anatomy practical work. We obtained a scenario of practical work in the form of a slide show that the teacher can use for works with or without model and even remotely.

The virtual reality obtained with the 3D reconstructions of CT scans of the rib cage is a tool for self-learning of osteology for students but also a way for teachers to do practical work without having to use models, and even at a distance.

Key words: 3D imaging, Teaching, Tomodensitometry, Osteology.


[1]. Guyard A, Tamames L. Contrubution à une démarche de validation en bonnes pratiques biomédicales en établissement de santé : la grille de réponse [https://www.utc.fr/˜farges/dess_tbh/].
[2]. Leguerrier A. Nouveaux Dossiers d’Anatomie-P.C.E.M.:Thorax. Heure de France, Paris, 2ème édition 2005:19-24.
[3]. Delmas V. Anatomie générale. Elsevier Masson SAS, Paris, ,2008:262-263.
[4]. Pujol S, Baldwin M, Nassiri J, Kikinis R and Shaffer K. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts. Radiologic education 2016, 23 (4):507-516.
[5]. Kamina P. Anatomie Clinique Tête Cou Dos. Maloine 3ème édition 2006 ;130-138.
[6]. Uhl J-F, Ordureau S, Delmas V. Les nouveaux outils de dissection virtuelle pour l’étude anatomique du système vasculaire. e-mémoires de l’Académie Nationale de Chirurgie, 2008;7(2):39-42.
[7]. Satava RM. Medical applications of virtual reality. J Medical Systems 1995;19(3):275-280.
[8]. Abouashem Y, Daya M, Savanah S, Strkalj G. The application of 3d printing in anatomy education. Med Educ Online 2015;20:29847.
[9]. Majin M. Réalisation d’un outil de téléenseignement : anatomie virtuelle du crâne de chiens. Thèse de médecine Vétérinaire. Toulouse 2005.89 pages.
[10]. Sahnoun M. De la réalité augmentée pour l’apprentissage de la chirurgie pelvienne gynécologique. Thèse médecine université de SFAX année 2010.
[11]. Ackerman M J. The Visible Human project. A resource for education. Acad Med 1999;74:667-670.
[12]. Cotin S, Delingette H, Ayache N. Real time volumetric deformable models for surgery simulation. In Visualization in Biomedical Computing, Proceedings, volume 1131 of Lecture Notes in Computer Science. Springer Verlag Heidelberg-New York, September 1996.
[13]. Delingette H. General object reconstruction based on simplex meshes. International Journal of Computer Vision, Springer Verlag, 1999;32(2):111-146.
[14]. Gilles B, Moccozet L, and Magnenat-Thalmann N. Anatomical Modelling of the Musculoskeletal System from MRI.: MICCAI, 2006;LNCS 4190:289–296.
[15]. Negi S, Dhiman S, Kumar Sharma R. Basics and applications of rapid prototyping medical models. Rapid Prototyp J 2014;20(3):256-267.
[16]. Etchepareborde S F P. Contribution à la réalisation d’un CD-ROM le d’ostéologie comparée des mammifères domestiques.These médecine vétérinaire.– tou3-4070 ;2005.
[17]. Evrard Y, Mouchel J, Strainchamps D. Imagerie 3D en Tomodensitométrie. Master en Management des technologies en santé, Université de Technologie de Compiègne, 2005.
[18]. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann C M, Unterhinninghofen R, Kauczor HU and Giesel F L. 3D printing based on imaging data : review of medical applications. Int J Comput Assist Radiol Surg 2010;5:335-341.

Cite this article: Mar N B, Seye Ch, Yacouba Garba K, Niang I, Seck I D, Sahoun M, Ba S, Ndoye JM, Ndiaye A, Niang E H, Diop A N, Ndiaye As. 3D Digital Imagery a Solution for the Teaching of Osteology: Example of the Thoracic cage. Int J Anat Res 2021;9(4):8133-8138. DOI: 10.16965/ijar.2021.169