IJAR.2020.205

Type of Article:  Original Research

Volume 8; Issue 3.3 (September 2020)

Page No.: 7738-7744

DOI: https://dx.doi.org/10.16965/ijar.2020.205

MORPHOMETRIC STUDY OF THE TRACHEA IN HUMAN FETUSES

Catarine C. Matos 1, Rodrigo R. Almeida ¹, José A. Aragão ¹, Erasmo Almeida-Junior ¹, Francisco P. Reis *¹.

1 Department of Medicine, Tiradentes University, Aracaju-SE, 49032-490, Brazil.

Corresponding Author: Francisco P. Reis, Department of Medicine, Tiradentes University, Aracaju-SE, 49032-490, Brazil. E-Mail:  franciscopradoreis@gmail.com

ABSTRACT

Background: The advancement of perinatal health care combined with the advancement of visual techniques that have been implemented allows surgeons and anesthesiologists to perform airway management and detect, monitor and surgically treat life-threatening tracheobronchial tree abnormalities. In this context it is very important to know the anatomy of the trachea in fetuses.

Results: The total length of trachea had significant progressive growth with the gestational age, highlighted differences the 20-24 week age group, 29-32 week age group and 33-38 week age group. Similar occurrence was found in these same groups with respect to pre-bifurcation length. Regarding to proximal transverse external diameter and distal transverse external diameter it was observed significant differences between age groups from 20 to 24 weeks, 25 to 28 weeks and 33 to 38 weeks. As the influence of gestational age and sex or both of the measures studied tracheal significant differences occurred only in relation to gestational age. This did not occur with respect to BL and number of cartilage rings.

Conclusions: It is possible that the current findings are a contribution in the child’s anatomy course and lead the clinical and surgical interest of that act, especially in intensive care units of newly born, as well as in surgery of children’s airways.

Key words: Airway, Morphometry, Gestational age, Gender.

REFERENCES

[1]. S. Standring, Gray’s Anatomia: A base anatômica da prática clínica, 2010.
[2]. P. Tubino and E. Alves, Anatomia funcional da criança: bases morfológicas para a prática pediátrica clínica e cirúrgica. Editora Universidade de Brasilia, 2007.
[3]. E. Adamiec, E. Dzięciołowska-Baran, F. Czerwiński, D. Miklaszewska, and I. Teul. Prenatal development of the human trachea. Folia Morphol. (Warsz)., 2002;61(2):123-125.
[4]. T. W. Sadler, Embriologia Médica, 11th ed. Rio de Janeiro: Langman, 2010.
[5]. M. Szpinda et al., New quantitative patterns of the growing trachea in human fetuses. Med. Sci. Monit., 2012;18(6):63-70.
https://doi.org/10.12659/MSM.882890
PMid:22648261 PMCid:PMC3560714
[6]. M. P. Wailoo and J. L. Emery. Normal growth and development of the trachea. Thorax, 1982;37(8):584-587.
https://doi.org/10.1136/thx.37.8.584
PMid:7179187 PMCid:PMC459379
[7]. HARJEET, D. SAHNI, Y. K. BATRA, and S. RAJEEV. Anatomical dimensions of trachea, main bronchi, subcarinal and bronchial angles in fetuses measured ex vivo. Pediatr. Anesth., 2008;18(11):1029-1034.
https://doi.org/10.1111/j.1460-9592.2008.02775.x
PMid:18950324
[8]. M. Daroszewski et al., Tracheo-bronchial angles in the human fetus — an anatomical, digital, and statistical study. Med. Sci. Monit. Basic Res., 2013;19:194-200.
https://doi.org/10.12659/MSMBR.889085
PMid:23857411 PMCid:PMC3724572
[9]. D. C. Helfer, J. Clivatti, A. M. Yamashita, and M. A. F. TSA. Anestesia para tratamento intraparto extraútero (EXIT) em fetos com diagnóstico pré-natal de malformações cervical e oral: Relato de casos. Rev Bras Anestesiol, 2012;62(3):411-423.
https://doi.org/10.1016/S0034-7094(12)70141-1
https://doi.org/10.1590/S0034-70942012000300013
PMid:22656686
[10]. P. M. S. Lassance et al., Procedimento Ex Utero e Intrapartum-EXIT-para correção de Malformação Congênita das Vias Aéreas e Pulmão-CPAM. Rev. Med. e Saúde Brasília, 2015;4(3).
[11]. M. Szpinda, M. Daroszewski, A. Woźniak, A. Szpinda, and C. Mila-Kierzenkowska. Tracheal dimensions in human fetuses: An anatomical, digital and statistical study. Surg. Radiol. Anat., 2012;34(4):317-323.
https://doi.org/10.1007/s00276-011-0878-7
PMid:21984196 PMCid:PMC3334485
[12]. Harjeet, D. Sahni, Y. K. Batra, and S. Rajeev. Anatomical dimensions of trachea, main bronchi, subcarinal and bronchial angles in fetuses measured ex vivo. Paediatr. Anaesth., 2008;18(11):1029-1034.
https://doi.org/10.1111/j.1460-9592.2008.02775.x
PMid:18950324
[13]. T. Matsumoto and W. B. de Carvalho. Intubação traqueal. J. Pediatr. (Rio. J)., 2007;83(2):S83-S90.
https://doi.org/10.1590/S0021-75572007000300010
[14]. B. A. Khade, N. Yadav, and C. Divan. Morphometry of human trachea in male and female using computerized tomography-a comparative study. Indian J. Clin. Anat. Physiol., 2016;3(4):526.
https://doi.org/10.5958/2394-2126.2016.00121.3
[15]. P. Fayoux, L. Devisme, O. Merrot, and B. Marciniak. Determination of Endotracheal Tube Size in a Perinatal PopulationAn Anatomical and Experimental Study. Anesthesiol. J. Am. Soc. Anesthesiol., 2006;104(5):954-960.
https://doi.org/10.1097/00000542-200605000-00011
PMid:16645447
[16]. U. Cinar, S. Halezeroglu, E. Okur, M. A. Inanici, and S. Kayaoglu. Tracheal Length in Adult Human: The Results of 100 Autopsies. Int. J. Morphol., 2016;34(1):232-236.
https://doi.org/10.4067/S0717-95022016000100033
[17]. B. R. King, M. D. Baker, L. E. Braitman, J. Seidl-Friedman, and M. S. Schreiner. Endotracheal tube selection in children: a comparison of four methods. Ann. Emerg. Med., 1993;22(3):530-534.
https://doi.org/10.1016/S0196-0644(05)81937-7
[18]. D. B. Hawkins. Pathogenesis of subglottic stenosis from endotracheal intubation. Ann. Otol. Rhinol. Laryngol., 1987;96(1):116-117.
https://doi.org/10.1177/000348948709600126
PMid:3813374
[19]. J. C. Wain Jr. Postintubation tracheal stenosis. in Seminars in thoracic and cardiovascular surgery, 2009;21(3):284-289.
https://doi.org/10.1053/j.semtcvs.2009.08.001
PMid:19942129
[20]. P. Contencin, P. Narcy, and L. D. HOLINGER. Size of endotracheal tube and neonatal acquired subglottic stenosis. Arch. Otolaryngol. Neck Surg., 1993;119(8):815-819.
https://doi.org/10.1001/archotol.1993.01880200015002
PMid:8343241
[21]. C.-H. Cherng, C.-S. Wong, C.-H. Hsu, and S.-T. Ho. Airway length in adults: estimation of the optimal endotracheal tube length for orotracheal intubation. J. Clin. Anesth., 2002;14(4):271-274.
https://doi.org/10.1016/S0952-8180(02)00355-0
[22]. C. C. P. Eagle. The relationship between a person’s height and appropriate endotracheal tube length. Anaesth. Intensive Care, 1992;20(2):156-160.
https://doi.org/10.1177/0310057X9202000206
PMid:1595848
[23]. M. Szpinda et al., The normal growth of the tracheal wall in human foetuses. Arch. Med. Sci., 2013;9(5):922-929.
https://doi.org/10.5114/aoms.2012.31411
PMid:24273580 PMCid:PMC3832814
[24]. H. C. Grillo, E. F. Dignan, T. Miura, and J. G. Scannell. Extensive resection and reconstruction of mediastinal trachea without prosthesis or graft: an anatomical study in man. J. Thorac. Cardiovasc. Surg., 1964;48(5):741-749.
https://doi.org/10.1016/S0022-5223(19)33357-4
[25]. H. C. Grillo. Surgical Anatomy of the Trachea and Techniques of Resection. Gen. Thorac. Surg., 1999;873-883.

Cite this article: Catarine C. Matos, Rodrigo R. Almeida, José A. Aragão, Erasmo Almeida-Junior, Francisco P. Reis. MORPHOMETRIC STUDY OF THE TRACHEA IN HUMAN FETUSES. Int J Anat Res 2020;8(3.3):7738-7744. DOI: 10.16965/ijar.2020.205