Type of Article:  Original Research

Volume 8; Issue 3.1 (July 2020)

Page No.: 7621-7632

DOI: https://dx.doi.org/10.16965/ijar.2020.175


Rakesh Kumar Jha 1 , Charmode Sundip Hemant *2.

1 Department of Anatomy, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India.

*2 Department of Anatomy, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India.

Corresponding author: Dr. Charmode Sundip Hemant, Department of Anatomy, All India Institute of Medical Sciences, Kunraghat, Gorakhpur, Uttar Pradesh, India -273008 E-Mail: sundip.charmode@yahoo.com


Background: In developing countries like India, several genetic, environmental factors and diverse cultural practices affect the normal growth and development of human embryo resulting in congenital malformations namely skeletal dysplasia. This article aims at analyzing the fetal skeletal growth pattern followed by its correlation to understand prenatal diagnosis of  skeletal dysplasia.

Materials and Methods: Two studies, conducted by the authors at different places in western India population have been  correlated. Primary prospective study, was conducted among 500 antenatal women coming for routine antenatal check-up during from 1st July 2015 to 31st May 2018. Routine fetal parameters like biparietal diameter, gestational sac, HC, AC, TC, FL along with all the other fetal long bones were measured using 2D/3D ultrasonography. Second retrospective study, was conducted on new-borns with congenital malformations in the same population.​

Result: Out of the total 10,114 deliveries conducted during the study period, 182 new-borns  had congenital malformations, out of which 23 cases had skeletal dysplasia. Fetal skeletal growth pattern analysis done was observed to be comparable with other populations residing in different parts of India and also abroad.   Thanatophoric dysplasia was the most common type of skeletal dysplasia. Prenatal diagnosis of skeletal dysplasia was done correctly in 75% of cases. Peak  of diagnoses were between 15 and 19 weeks of gestational age.

Conclusions: Fetal growth pattern analysis observed in western Indian population is similar to that observed in other groups of India and abroad. In majority of cases of thanatophoric dysplasia, prenatal ultrasound examination was diagnostic, providing a correct diagnosis using ultrasonography as the sole modality.

Key words: Skeletal Dysplasia, Prenatal Diagnosis, Fetal Growth Analysis, Thanatophoric  Dysplasia.


  1. Barkova E, Mohan U, Chitayat D, Keating S, Toi A, Frank J, Frank R, Tomlinson G, Glanc P. Fetal skeletal dysplasias in a tertiary care center: radiology, pathology, and molecular analysis of 112 cases. Clin Genet. 2015;87:330-7. https://doi.org/10.1111/cge.12434 PMid:24863959
  2. Rawhani R, Abdellatif A, Abushama M, Ahmed B. Antenatal diagnosis of fetal skeletal malformation. Donald Sch J Ultrasound Obstet. Gynecol. 2018;12:116-23. https://doi.org/10.5005/jp-journals-10009-1561
  3. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision.Am J Med Genet A 2007;143:1-18. https://doi.org/10.1002/ajmg.a.31483 PMid:17120245
  4. Deborah Krakow, Ralph S. Lachman, David L. Rimoin. Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genet Med. 2009 February; 11(2):127-133. https://doi.org/10.1097/GIM.0b013e3181971ccb PMid:19265753 PMCid:PMC2832320
  5. Rajan R., Girja B. and Vasantha R. Ultrasound determination of fetal growth parameters and gestational age. Infertility committee of the federation of Obs. and Gync. Society,1990;67:67-89.
  6. Westerway S. C., Estimating fetal weight for best clinical outcome, Australian Journal of Ultrasound in Medicine, 2012;15(1):13-17. https://doi.org/10.1002/j.2205-0140.2012.tb00136.x PMid:28191133 PMCid:PMC5025123
  7. Ashrafganjooei T., Naderi T., Eshrati B., and Babapoor N., Accuracy of ultrasound, clinical and maternal estimates of birth weight in term women, Eastern Mediterranean Health Journal, 2010;16(3):313-317. https://doi.org/10.26719/2010.16.3.313 PMid:20795447
  8. American Institute of Ultrasound in Medicine. AIUM 2018. Practice Parameter for the Performance of Standard Diagnostic Obstetric Ultrasound examinations. J Ultrasound Med 2018; 9999:1-12.
  9. Helman LM, Kobayashi M, Fillisti L, Lavenhar M. Growth and development of the human fetus prior to the twentieth week of gestation. Am J Obstet Gynecol.1969;103: 789-900. https://doi.org/10.1016/0002-9378(69)90575-4
  10. Robinson HP, Fleming JE.A critical evaluation of sonar crown rump length measurements. Br J Obstet Gynaecol. 1975;82:702- 710. https://doi.org/10.1111/j.1471-0528.1975.tb00710.x PMid:1182090
  11. Mukherjee B. and Mitra S. C. et al. Fetal biparietal diameters in the second half of gestational period determined clinically and ultrasonically. J. of Obs. And Gynaec. of India, 1986,XXXVI/5;764-766.
  12. Ghamande S. A. and Varawalla N. V. et al. ,Role of ultrasound to determine fetal gestational age. Indian Journal of Obs. And Gync. 1989;13:605.
  13. Eberhard M., Mi Sook K. K. and Stephanie P. Ultrasonic mensuration of fetal limb bones in the second and third trimesters. Journal of clinical ultrasound, 1987;15/3:175-183. https://doi.org/10.1002/jcu.1870150305 PMid:3134412
  14. Uttarilli, H Shah, A Shukla, and KM Girisha. A review of skeletal dysplasia research in India. J Postgrad Med. 2018 Apr-Jun; 64(2):98-103. https://doi.org/10.4103/jpgm.JPGM_527_17 PMid:29692401 PMCid:PMC5954821
  15. Li SL. Prenatal ultrasound diagnosis and prognosis of fetal limb deformities. Chin J Practic Gynecol Obstet. 2007;23:399-400.
  16. Milks KS, Hill LM, Hosseinzadeh K. Evaluating skeletal dysplasias on prenatal ultrasound: an emphasis on predicting lethality. Pediatr Radiol. 2017;47:134-45. https://doi.org/10.1007/s00247-016-3725-5 PMid:27904917
  17. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A:943-68. https://doi.org/10.1002/ajmg.a.33909 PMid:21438135 PMCid:PMC3166781
  18. Sharony R, Browne C, Lachman RS, Rimoin DL. Prenatal diagnosis of the skeletal dysplasias. Am J Obstet Gynecol 1993; 169: 668-675. https://doi.org/10.1016/0002-9378(93)90641-U
  19. Goncalves L, Jeanty P. Fetal biometry of skeletal dysplasias: A multicentric study. J Ultrasound Med 1994; 13: 977-985. https://doi.org/10.7863/jum.1994.13.12.977 https://doi.org/10.7863/jum.1994.13.10.767
  20. Gaffney G, Manning N, Boyd PA, Rai V, Gould S, Chamberlain P. Prenatal sonographic diagnosis of skeletal dysplasias – a report of the diagnostic and prognostic accuracy in 35 cases.Prenat Diagn 1998; 18: 357-362. https://doi.org/10.1002/(SICI)1097-0223(199804)18:4<357::AID-PD276>3.0.CO;2-0
  21. Doray B, Favre R, Viville B, Langer B, Dreyfus M, Stoll C. Prenatal sonographic diagnosis of skeletal dysplasias. A report of 47 cases. Ann Genet 2000; 43: 163-169. https://doi.org/10.1016/S0003-3995(00)01026-1
  22. Tretter AE, Saunders RC, Meyers CM, Dungan JS, Grumbach K, Sun CC, Campbell AB, Wulfsberg EA. Antenatal diagnosis of lethal skeletal dysplasias. Am J Med Genet 1998; 75: 518-522. https://doi.org/10.1002/(SICI)1096-8628(19980217)75:5<518::AID-AJMG12>3.0.CO;2-N
  23. Parilla BV, Leeth EA, Kambich MP, Chilis P, MacGregor SN. Antenatal detection of skeletal dysplasias. J Ultrasound Med 2003; 22: 255-258. https://doi.org/10.7863/jum.2003.22.3.255 PMid:12636325
  24. Schramm, K. P. Gloning, S. Minderer, C. Daumer-Haas, K. Ho¨ Rtnagel, A. Nerlich and B. Tutschek. Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol 2009; 34: 160-170. https://doi.org/10.1002/uog.6359 PMid:19548204
  25. Rousseau F., el Ghouzzi V., Delezoide A.L., Legai-Mallet L., Le Merrer M., Munnich A., Bonaventure J. Missense FGFR3 mutations create cysteine residues in thanatophoryc dwarfism type I (TDI). Hum. Mol. Genet. 1996; 5:509-512. https://doi.org/10.1093/hmg/5.4.509 PMid:8845844
  26. Passos-Bueno M.R., Wilcox W.R., Jabs E.W., Sertie A.L., Alonso L.G., Kitoh H. Clinical spectrum of fibroblast growth factor receptor mutations. Hum. Mut. 1999;14:115-125. https://doi.org/10.1002/(SICI)1098-1004(1999)14:2<115::AID-HUMU3>3.0.CO;2-2
  27. Rousseau A., Saugier P., Le Merrer M., Munnich A., Delezoide A.L., Maroteaux P ., Bonaventure J., Narcy F., Sanak M. Stop codon FGFR3 mutations in thanatophoryc dwarfism type1. Nat. Genet. 1995;10:11- 12. https://doi.org/10.1038/ng0595-11 PMid:7647778
  28. P. Chen, S.R. Chern, J.C. Shih, W. Wang, L.F. Yeh, T.Y. Chang, et al. Prenatal diagnosis and genetic analysis of type I and type II thanatophoric dysplasia. Prenat Diagn, 2001;21:89-95. https://doi.org/10.1002/1097-0223(200102)21:2<89::AID-PD21>3.0.CO;2-9
  29. R. Wilcox, P.L. Tavormina, D. Krakow, H. Kitoh, R.S. Lachman, J.J.Wasmuth, et al. Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. Am J Med Genet, 1998;78:274-281. https://doi.org/10.1002/(SICI)1096-8628(19980707)78:3<274::AID-AJMG14>3.0.CO;2-C
  30. Castori, S. Morlino, F.C. Radio, C. De Bernardo, P. Grammatico. The “old theme” of variability versus transitory phenotypes in thanatophoric dysplasia type 1: two 19-week-old fetuses with (“San Diego” variant) and without ragged metaphyses due to the same FGFR3 mutation. Am J Med Genet A 2013;161a:2675-2677. https://doi.org/10.1002/ajmg.a.36131 PMid:24038754

Cite this article: Rakesh Kumar Jha, Charmode Sundip Hemant. FETAL SKELETAL GROWTH PATTERN ANALYSIS IN FETUSES WITH SKELETAL DYSPLASIA– AN ULTRASONOGRAPHY STUDY IN WESTERN INDIAN POPULATION. Int J Anat Res 2020;8(3.1):7621-7632. DOI: 10.16965/ijar.2020.175