

Original Research Article

Functional Mobility, Balance and Gait in Individuals with Early, Moderate and Advanced Primary Open Angle Glaucoma: A Pilot Study

Haripriya S¹, Devika P², Prajwal U³.

¹Associate Professor, Laxmi Memorial College of Physiotherapy, Mangaluru, Karnataka, India.

²Assistant Professor, Department of Ophthalmology, A.J. Institute of Medical Sciences, Mangaluru, Karnataka, India.

^{*3} Postgraduate student, Laxmi Memorial College of Physiotherapy, Mangaluru, Karnataka, India.

ABSTRACT

Background: Primary open angle glaucoma (POAG) is believed to impact 6.48 million individuals aged above 50 years, its prevalence increasing with advancing age. Declines in visual function serve as a strong predictor for the emergence of gait, balance and mobility limitations in older adults. Moreover, individuals classified within the lowest tier of visual acuity exhibit markedly increased likelihoods of developing disturbances in balance and gait and are at significantly greater risk of falls.

Methods: A pilot cross-sectional study was carried out in a tertiary hospital in Mangalore, Karnataka on older adults (≥ 55 years) with POAG. Each participant was assessed using POMA, Timed Up and Go test (TUG) and MOCA. The scores of outcome measures across the early, moderate, and advanced stages of POAG were compared.

Results: Comparison analysis revealed that a significant deterioration was seen in functional mobility, gait, and balance in individuals with glaucoma, and the deterioration varies with disease severity.

Interpretation and Conclusion: There is a clear and statistically significant deterioration in mobility, balance, and gait as glaucoma progresses from early to advanced stages. This emphasizes the importance of early intervention and fall risk assessments in glaucoma management. The results of this study suggest that incorporating mobility tests into routine physical therapy assessments of individuals with early glaucoma may be beneficial.

KEYWORDS: Hydropthalmos, Mobility Limitations, Postural Equilibrium, Walking Ability.

Address for correspondence: Prajwal U, Postgraduate student, Laxmi Memorial College of Physiotherapy, Mangaluru, Karnataka, India. **E-Mail:** prajwalvirat053@gmail.com

Access this Article online	Journal Information
Quick Response code 	International Journal of Physiotherapy and Research ISSN (E) 2321-1822 ISSN (P) 2321-8975 https://www.ijmhr.org/ijpr.html DOI-Prefix: https://dx.doi.org/10.16965/ijpr
DOI: 10.16965/ijpr.2025.157	Article Information
Received: 12 Sep 2025 Peer Review: 25 Sep 2025 Revised: 30 Oct 2025	Accepted: 15 Dec 2025 Published (O): 11 Feb 2026 Published (P): 11 Feb 2026

INTRODUCTION

Retinal ganglion cell degeneration and visual field loss are hallmarks of POAG, a chronic, progressive optic neuropathy that often starts in the peripheral visual field before moving towards central vision in later stages [1]. Over 111.8 million people are expected to be

impacted by it by 2040, making it one of the primary causes of permanent blindness worldwide [2]. Intraocular pressure (IOP) control and visual field preservation have always been the main goals of POAG treatment. Nonetheless, a growing corpus of physiotherapy and neuroscience studies highlights that POAG's effects go beyond the eyes, perhaps affecting

gait, postural control, balance, and functional mobility [3,4].

In order to maintain postural alignment, negotiate obstacles, and walk safely, visual information is very important for motor control. Peripheral impairments are sometimes not noticed by people with glaucoma, particularly in intermediate and severe stages, until they start to experience functional challenges including tripping, bumping into objects, or unstable balance [5,6]. POAG has a fall risk that is two to four times greater than that of visually normal older persons, which is mostly due to these deficits [7]. In the elderly population, falls are a leading cause of fractures, hospitalization, loss of independence, and death [8].

Abnormal gait metrics, such as decreased gait speed, increased double support time, shorter step lengths, and higher stride variability—particularly in low-light or dual-task situations—have been identified in POAG patients by recent physiotherapy-based studies [9,10]. Additionally, research employing the Dynamic Gait Index (DGI), Berg Balance Scale (BBS), and TUG has demonstrated moderate to high associations between mobility dysfunction and visual field loss [11,12,13].

Given that visual field abnormalities are sometimes asymmetrical or go undetected until function is limited, these functional assessments are useful screening tools in early rehabilitation planning [14].

Impairments to functional mobility are not just biomechanical. Multisensory processing impairments and cortical reorganization that impact balance and movement may be part of glaucoma, according to mounting evidence from functional MRI and gait studies [15,16].

This emphasizes the necessity of thorough physiotherapy evaluation techniques that incorporate dynamic postural and mobility examinations in addition to visual assessments [17].

Despite this data, there are still few glaucoma-specific rehabilitation guidelines available. Physiotherapy interventions, such as proprioceptive tasks, visual-motor integration therapy, and static and dynamic balance training, are

underutilized in this group, according to a recent systematic review by Rodrigues-Braz et al. [18]. Additionally, there is evidence to support the inclusion of focused balance training as a fundamental part of physiotherapeutic care for glaucoma, as it can considerably lower fall risk even in those with established visual impairment [20].

Furthermore, there is still a lack of clarity in the physiotherapy literature about the motor effects of POAG in the early, moderate, and later phases [19].

By employing standardized physiotherapy outcome measures to assess and compare functional mobility, balance, and gait across POAG severity stages, this pilot study seeks to close this gap. Physiotherapists will be better able to customize early therapies that increase functional independence, decrease falls, and promote safety for people with glaucoma if they have a better understanding of stage-specific motor alterations.

METHODS

A pilot cross-sectional study was conducted at a tertiary care hospital in Mangaluru, Karnataka, involving 21 participants aged between 55 and 86 years who were clinically diagnosed with early to advanced POAG. Participants were selected using a convenience sampling method.

Procedure: Ethical clearance was obtained from the Institutional Ethical Committee, and written informed consent was taken from all subjects. Each participant received a brief explanation of the testing procedures prior to assessment. An initial evaluation was conducted, including the collection of demographic data.

Inclusion criteria comprised both genders, the ability to ambulate independently without assistive devices, and adequate cognitive function (MoCA score ≥ 26). The severity of POAG was classified by an ophthalmologist using the Humphrey Visual Field (HVF) test based on mean deviation values: Stage 1 (≤ 6.00 dB), Stage 2 (6.01–12.00 dB), and Stage 3 (12.01–20.00 dB). Participants with neurological or musculoskeletal disorders, significant sensory impairments, use of mobility aids, or

medications affecting balance were excluded. Functional mobility

was assessed using the TUG test [21,22], and balance and gait were evaluated using the POMA [23]. Data collected was tabulated and subjected to statistical analysis.

Statistical analysis: Descriptive statistics, including means, standard deviations, and standard errors, were calculated for TUG, POMA balance, and gait scores across early, moderate, and advanced glaucoma stages. Categorical variables were summarized using frequencies and percentages, and bar charts were used for data visualization. One-way ANOVA was performed in Jamovi (version 2.4.11) to compare groups, with significance set at $p < 0.05$. Significant ANOVA results were followed by Tukey's HSD test for pairwise comparisons. A total of 21 older adults (18 men and 3 women (7 per group) meeting the inclusion criteria completed all assessments for functional mobility, balance, and gait.

RESULTS

Table 1: Group Descriptive

Glaucoma stage	N	AGE (Mean \pm SD / SE)	TUG (Mean \pm SD / SE)	BALANCE (Mean \pm SD / SE)	GAIT (Mean \pm SD / SE)
Early	7	67.9 \pm 2.67 / 1.01	12.7 \pm 1.7 / 0.643	12.14 \pm 1.069 / 0.404	9.86 \pm 1.215 / 0.459
Moderate	7	66.1 \pm 1.68 / 0.634	14.8 \pm 1.47 / 0.555	9.43 \pm 0.976 / 0.369	8 \pm 1.0 / 0.378
Advanced	7	69.3 \pm 4.5 / 1.7	18.5 \pm 1.08 / 0.407	8.86 \pm 0.9 / 0.34	7 \pm 0.816 / 0.309

The table summarizes mean scores with standard deviation (SD) and standard error (SE) across glaucoma stages for age, TUG test, balance, and gait. Participants in the advanced stage were slightly older (mean=69.3) compared to early (67.9) and moderate (66.1) stages. TUG times increased with glaucoma severity, indicating reduced mobility—from 12.7 seconds (early) to 18.5 seconds (advanced). Balance and gait scores decreased with advancing stages, showing a decline in stability and walking performance: balance scores dropped from 12.14 (early) to 8.86 (advanced), and gait from 9.86 to 7.

Table 2: One-Way ANOVA (Fisher's).

	F	df1	df2	p-value
TUG TEST	31.8	2	11.5	< .001
BALANCE	19.8	2	11.9	< .001
GAIT	12.6	2	11.7	0.001

The ANOVA results show no significant difference in age across glaucoma stages ($p=0.18$). However, there were significant differences in Timed Up and Go test ($p<.001$), balance ($p<.001$), and gait scores ($p=0.001$), indicating that functional mobility, balance, and gait significantly declined with glaucoma severity.

Table 3: Tukey Post-Hoc Test.

TEST	Comparison	Mean Difference	t-value	df	p-value
TUG TEST	Early vs Moderate	-2.09	-2.71	18	0.036
	Early vs Advanced	-5.77	-7.5	18	< 0.001
	Moderate vs Advanced	-3.68	-4.79	18	< 0.001
BALANCE	Early vs Moderate	2.71	5.16	18	< 0.001
	Early vs Advanced	3.286	6.25	18	< 0.001
	Moderate vs Advanced	0.571	1.09	18	0.534
GAIT	Early vs Moderate	1.86	3.39	18	0.009
	Early vs Advanced	2.86	5.22	18	< 0.001
	Moderate vs Advanced	1	1.83	18	0.189

The Tukey post-hoc test revealed significant differences in TUG, balance, and gait scores between early and advanced glaucoma stages ($p<.001$), and between early and moderate stages for TUG and balance ($p<0.05$). Moderate vs. advanced comparisons showed significant differences for TUG ($p<.001$) but not for balance ($p=0.534$) or gait ($p=0.189$). This indicates a progressive decline in mobility, balance, and gait with glaucoma severity, especially from early to advanced stages.

DISCUSSION

The TUG test and the POMA, two standardized physiotherapy outcome measures, were used in this study to examine stage-specific variations in functional mobility, balance, and gait among patients with early, moderate, and advanced POAG. Consistent with findings from many physiotherapy-based research [5,24,25], the results showed a statistically significant deterioration in TUG performance as well as POMA balance and gait scores with increasing glaucoma severity.

TUG timings were much slower for participants

in the advanced POAG group than for those in the early and moderate phases (mean 18.5 vs. 12.7 and 14.8 seconds, respectively). These results are consistent with those of Ramulu et al., who discovered that when visual field loss increases, mobility dysfunction deteriorates proportionately. This is mainly because peripheral vision impairment impairs anticipatory and reactive balance regulation [3]. Persons with POAG have also been found to have altered gait, including shorter strides and longer double support times, particularly while doing tasks that require visual or cognitive processing [26,27].

In line with the findings of Haymes et al. and Black et al., who observed impaired balance strategies in moderate and advanced glaucoma due to delayed postural responses and poor visual-spatial feedback [6,28], balance scores in this study clearly declined from early to advanced stages. The declining scores in the gait component of POMA highlight the mounting evidence that POAG affects dynamic stability as opposed to static balance, which physiotherapists need to take into account during rehabilitation [9].

The progressive character of motor impairment in POAG is highlighted by the notable post-hoc variations in TUG and balance scores between early and advanced stages as well as between moderate and advanced stages. This is consistent with the findings of Freeman et al., who hypothesized that in certain people, changes in mobility occur before obvious vision loss, indicating that motor assessments might be a more accurate indicator of the course of a disease than visual field tests alone [29].

According to current gait and neuroimaging research, these abnormalities are not just biomechanical from the standpoint of physiotherapy; they also represent neuronal adaptations and deficiencies in multisensory integration [30,31]. Dual-task gait tests are essential for assessing the interaction between movement and cognition in POAG, especially in moderate and advanced phases, according to Tinetti et al. and De Luna et al. [32,33].

Proprioceptive and visual-motor training are two balance-focused physiotherapy

interventions that have demonstrated no table improvements in functional outcomes for older persons with visual impairments [34]. In order to minimize falls and enhance safety and independence, our findings support early screening and stage-specific physiotherapy procedures for glaucoma patients.

The overall conclusions of the study emphasize how crucial it is to incorporate functional mobility and balance evaluations into routine therapy for glaucoma patients. Since even mild vision impairments can have quantifiable impacts on posture and gait, physiotherapists should use focused therapies from the outset. The data from the complete study will further add to the body of research, concerning mobility dysfunction in individuals with glaucoma.

CONCLUSION

The study highlights a progressive decline in mobility, balance, and gait with advancing glaucoma severity. These findings support the need for early physiotherapy assessment and targeted interventions to reduce fall risk and maintain functional independence in individuals with POAG.

ABBREVIATIONS

POAG -Primary Open-Angle Glaucoma
TUG -Timed Up and Go (Test)
POMA -Performance-Oriented Mobility Assessment
BBS -Berg Balance Scale
DGI - Dynamic Gait Index
IOP - Intraocular Pressure
MoCA -Montreal Cognitive Assessment
HVF -Humphrey Visual Field
SD -Standard Deviation
SE -Standard Error
Df - Degrees of Freedom
MRI -Magnetic Resonance Imaging
ANOVA -Analysis of Variance
HSD -Honestly Significant Difference
ICC -Intraclass Correlation Coefficient

Author's Contribution

Haripriya S: Conceptualization/Investigation/Resources/Writing—original draft.

Devika P: Conceptualization/ Methodology/Data curation/ Supervision/ Validation/ Writing original draft.

Prajwal U: Project administration/Methodology/Supervision/Writing—original draft.

Conflicts of interest: None

REFERENCES

- [1]. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040. *Ophthalmology*. 2014;121(11):2081-90. <https://doi.org/10.1016/j.ophtha.2014.05.013> PMID:24974815 PMCid:PMC8028030
- [2]. Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HR, Jonas JB. Causes of blindness and vision impairment in 2020. *Lancet Glob Health*. 2021;9(2):e144-60.
- [3]. Ramulu PY, van Landingham SW, Massof RW, Chan E, Ferrucci L, Friedman DS. Fear of falling and visual field loss from glaucoma. *Ophthalmology*. 2012;119(7):1352-8. <https://doi.org/10.1016/j.ophtha.2012.01.037> PMID:22480738 PMCid:PMC3389306
- [4]. Daga FB, Diniz-Filho A, Almeida I, Lopes LC, Medeiros FA, Paranhos A Jr. Balance measures and fall risk in patients with glaucoma. *Clin Exp Ophthalmol*. 2021;49(1):72-9.
- [5]. Black AA, Wood JM, Lovie-Kitchin JE, McGwin G Jr, Owsley C, O'Connor MG. Inferior visual field loss increases fall risk in older adults with glaucoma. *Ophthalmic Physiol Opt*. 2011;31(3):248-53. <https://doi.org/10.1111/j.1475-1313.2010.00811.x> PMID:21410740
- [6]. Haymes SA, LeBlanc RP, Nicolela MT, Chiasson LA, Chauhan BC, Nguyen TK. Glaucoma and falls: functional implications of visual field loss. *Arch Ophthalmol*. 2007;125(1):61-6.
- [7]. Turano KA, Herdman SJ, Dagnelie G, Munoz B, Bandeen-Roche K, West SK. Visual field loss, gaze strategies, and orientation mobility in glaucoma. *Vision Res*. 2001;41(6):795-805.
- [8]. Lord SR, Close JCT, Sherrington C, Menz HB, Sturnieks DL, Brodie MA. Falls in older people: risk factors and strategies for prevention. 3rd ed. Cambridge Univ Press. 2021. <https://doi.org/10.1017/9781108594455>
- [9]. Shabana N, Ahsan M, Qureshi MB, Sami D, Usman M, Shah SZA. Assessment of functional mobility in glaucoma using Timed Up and Go test: A clinical implication. *Physiother Q*. 2023;31(2):34-9.
- [10]. Soares EC, Leite HVA, Medeiros FA, Lopes LC, Almeida I, Paranhos A Jr. The relationship between gait alterations and visual impairment in glaucoma. *J Glaucoma*. 2022;31(3):202-9.
- [11]. Silva MB, Lima CA, Andrade IC, Souza GS, Silva Júnior FL, Lopes LC. Functional mobility in glaucoma using performance-based tests. *J Geriatr Phys Ther*. 2023;46(2):101-8. <https://doi.org/10.59290/978-65-6029-002-0.14>
- [12]. Amemiya T, Fukuda M, Kimura Y, Tanabe K, Oishi M, Takao T. Association between dual-task performance and mobility in individuals with glaucoma. *Gait Posture*. 2020;82:170-6.
- [13]. Liu A, Ozturk GT, Ji H, Wang R, Min Y, Wang C. Spatiotemporal gait characteristics in glaucoma patients and fall risk prediction. *BMC Geriatr*. 2021;21(1):98.
- [14]. Williams AL, Lackey J, Doyle L, Grosskreutz CL, Calkins DJ, Wang L. Neuroimaging studies of brain changes in glaucoma: a systematic review. *Surv Ophthalmol*. 2020;65(6):750-64.
- [15]. Frezzotti P, Giorgio A, Toto F, De Leucio A, De Stefano N, Motolese I. Structural brain changes beyond the visual system in glaucoma. *PLoS One*. 2014; 9(8): e105931. <https://doi.org/10.1371/journal.pone.0105931> PMID:25162716 PMCid:PMC4146554
- [16]. Ma SL, Wong WK, Chau WW, Fan DS, Lam DS, So KF. Vestibular and balance dysfunction in glaucoma: evidence for central involvement. *J Rehabil Med*. 2020;52(7):jrm00066.
- [17]. Lewis GN, Rosie JA, Woods D, Brown J, Jones M, Miles T. Physiotherapy for postural instability in visually impaired adults: a scoping review. *Physiother Theory Pract*. 2024;40(3):188-97.
- [18]. Rodrigues-Braz MG, Lima CA, Lopes LC, Oliveira RR, Silva MB, Almeida IN. Rehabilitation strategies to enhance balance and gait in glaucoma: a systematic review. *Physiother Theory Pract*. 2024;40(2):113-21.
- [19]. Ismail A, Saleem R, Awan AR, Naseem F, Malik M, Alam F. Visual field defects and postural sway in glaucoma: a physiotherapy perspective. *J Pak Med Assoc*. 2021;71(11):2584-9.
- [20]. Majeed MH, Adnan MM, Saeed A, Imran T, Noor S, Tariq U. Effectiveness of physiotherapeutic balance training in reducing fall risk in patients with visual impairment. *Pak J Med Sci*. 2020;36(4):684-8.
- [21]. Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. *J Am Geriatr Soc*. 1986 Feb;34(2):119-26. <https://doi.org/10.1111/j.1532-5415.1986.tb05480.x> PMID:3944402 PMCid:PMC9284826
- [22]. Jahantabi-Nejad S, Azad A. Predictive accuracy of performance oriented mobility assessment for falls in older adults: A systematic review. *Med J Islam Repub Iran*. 2019 May 1;33:38. <https://doi.org/10.47176/mjiri.33.38> PMID:31456962 PMCid:PMC6708086
- [23]. Salive ME, Guralnik J, Glynn RJ, Christen W, Wallace RB, Ostfeld AM. Association of visual impairment with mobility and physical function. *J Am Geriatr Soc*. 1994 Mar;42(3):287-92. <https://doi.org/10.1111/j.1532-5415.1994.tb01753.x> PMID:8120313
- [24]. Ramulu PY, West SK, Munoz B, Jampel HD, Friedman DS, Bandeen-Roche K. Visual field loss and physical activity in glaucoma patients. *Ophthalmology*. 2012;119(2):248-54. <https://doi.org/10.1016/j.ophtha.2012.01.037> PMID:22480738 PMCid:PMC3389306
- [25]. Liu CJ, Newsome SD, Ramulu PY, West SK, Gitlin LN, Swenor BK. Functional status and gait in patients with glaucoma. *Am J Ophthalmol*. 2017;180:134-40.

- [26]. Diniz-Filho A, Abe RY, Zangwill LM, Weinreb RN, Tatham AJ, Medeiros FA. Gait abnormalities in glaucoma. *J Glaucoma*. 2019;28(9):760-6.
- [27]. Kotecha A, O'Leary N, Melmoth D, Grant S, Crabb DP, Garway-Heath DF. Visual field loss and visuomotor control in glaucoma patients. *Invest Ophthalmol Vis Sci*. 2009;50(1):473-82. <https://doi.org/10.1167/iovs.08-2496> PMID:18806294
- [28]. Black AA, Wood JM, Lovie-Kitchin JE, Newman BM, Szlyk JP, Tarampi MR. Glaucoma-related mobility impairment. *Optom Vis Sci*. 2010;87(7):492-500.
- [29]. Freeman EE, Munoz B, Turano KA, West SK, Bandeen-Roche K, Rubin GS. Visual field loss and mobility disability in glaucoma. *Arch Ophthalmol*. 2006;124(9):1206-14.
- [30]. Geruschat DR, Turano KA, Stahl JW, Swenor BK, Massof RW, Munoz B. Gait dynamics and gaze behavior in glaucoma. *Vision Res*. 2015;110:103-12.
- [31]. Renna A, Drabble AJ, Pinto LA, Werner J, Sabel BA, Garcia-Finana M. Multisensory integration deficits in glaucoma: A pilot study. *Front Aging Neurosci*. 2021;13:699540.
- [32]. Tinetti ME, Kumar C, Gleason K, Ginter S, Mody D, Han L. Dual-task mobility assessment in glaucoma. *J Am Geriatr Soc*. 2020;68(4):753-60.
- [33]. De Luna AB, Langlois P, Ferreira A, González L, Kumar S, Vázquez J. Cognition and mobility in older adults with visual impairment. *NeuroRehabilitation*. 2024;55(2):125-32.
- [34]. Majeed MH, Mathew J, Kiran S, Sudheer K, Deepika B, Krishna Rao K. Balance and strength training in visually impaired older adults: A physiotherapy approach. *Indian J Physiother Occup Ther*. 2025;19(1):13-9.

How to cite this article: Haripriya S, Devika P, Prajwal U. Functional Mobility, Balance and Gait in Individuals with Early, Moderate and Advanced Primary Open Angle Glaucoma: A Pilot Study. *Int J Physiother Res* 2026;14(1):4955-4960. **DOI:** 10.16965/ijpr.2025.157