Quick Links
Archives
How   to   cite   this   Article:    Anagha   Nawal,   Peter   Temple   Smith,   Sally   Catt.    EFFECT   OF   CHEMICALLY   DEFINED   LIPID   MOLECULES   ON BLASTOCYST DEVELOPMENT AND OUTGROWTH . Int J Anatomy Res 2016;4(4):2950-2958. DOI: 10.16965/ijar.2016.380.
Type of Article: Original Research DOI: http://dx.doi.org/10.16965/ijar.2016.380 Page No.:  2950-2958
EFFECT OF CHEMICALLY DEFINED LIPID MOLECULES ON BLASTOCYST DEVELOPMENT AND OUTGROWTH Anagha Nawal * 1 , Peter Temple Smith 2 , Sally Catt 3 . *1 Assistant Professor, Dept. of Anatomy, Mahatma Gandhi Medical College, Aurangabad [MS], India. 2  Associate Professor and Director, EPRD  Department Southern Clinical School, Monash University Clayton, Australia. 3  Coordinator of MCE, EPRD  Department Southern Clinical School, Monash University Clayton, Australia. Correspondence   Address:    Dr.   Anagha   Nawal,   Assistant   Professor,   Dept.   of   Anatomy,   Mahatma   Gandhi   Medical   College,   Aurangabad   [MS],   India.   E-Mail:   dranagha2000@gmail.com ABSTRACT Introduction:    Fatty   acids   play   a   diverse   role   in   early   embryonic   development   and   implantation.   This   study   examined   the   effect   of   a   chemically   defined additive containing saturated and unsaturated fatty acids on mouse fertilization and embryo development in vitro. Objective:    To   observe   the   effect   of   a   chemically   defined   addition   of   fatty   acids   on   in-vitro   fertilization,   early   embryonic   development   and   blastocyst outgrowth Study   Design:    F1   mice   (4-6   weeks)   were   superovulated   and   16   hours   later   oocytes   were   collected   and   prepared   for   IVF   using   spermatozoa   from   F1   males. Oocytes    (n=355)    were    randomly    allocated    to    global    fertilization    medium    with    (+)    or    without    (-)    chemically    defined    lipid    (# 11905-031,    Life     Global Technologies).   Fertilization   was   checked   (2-PN)   6-9hrs   after   insemination   and   embryos   were   grown   up   in   blastocyst   culture   medium   +   lipid   additive   or controls.   Embryo   development   was   monitored   daily   until   D5   when   blastocysts   were   transferred   to   96-well   plates.   Blastocyst   outgrowths   were   imaged   on D6,   D7   and   D9   using   XY-Cyclone   software.   Data   was   analyzed   (Chi-squares)   to   compare   the   effect   of   lipid   on   fertilization   rate,   blastocyst   development   and outgrowths. Result:   Oocytes   (n=355)   randomly   allocated   to   control   (n=170)   or   +lipid   groups   for   fertilization   showed   no   difference   in   fertilization   rates   in   medium   with (n=155)   or   without   lipid.   Addition   of   lipid   to   blastocyst   medium   resulted   in   a   significant   increase   (p<0.05)   in   blastocyst   formation   (73%   vs   87%).   but produced no difference in blastocyst hatching or outgrowth area. Conclusion :   A   chemically   defined   lipid   additive   promoted   embryonic   development   in   vitro.   Further   studies   are   needed   to   examine   the   dose-response   effect of lipid on fertilization and embryo development. KEY WORDS: Blastocysts, Implantation, Fatty acids and In vitro culture. References 1 . WASSARMAN,   P.   A.,   JOVINE,   L.,   LITSCHER,   E.   S.,   QI,   H.   Y.   &   WILLIAMS,   Z.   Egg-sperm   interactions   at   fertilization   in   mammals.   European   Journal   of Obstetrics Gynecology and Reproductive Biology, 2004;115:S57-S60. 2 . GARDNER,   D.   K.,   POOL,   T.   B.   &   LANE,   M.   Embryo   nutrition   and   energy   metabolism   and   its   relationship   to   embryo   growth,   differentiation,   and   viability. Seminars in Reproductive Medicine, 2000;18:205-218. 3 . TERVIT,   H.   R.,   ROWSON,   L.   E.   A.   &   WHITTING.DG.   SUCCESSFUL   CULTURE   IN-VITRO   OF   SHEEP   AND   CATTLE   OVA.   Journal   of   Reproduction   and   Fertility, 1972;30:493-495 4 . QUINN,   P.,   KERIN,   J.   F.   &   WARNES,   G.   M.   IMPROVED   PREGNANCY   RATE   IN   HUMAN   INVITRO   FERTILIZATION   WITH   THE   USE   OF   A   MEDIUM   BASED   ON THE COMPOSITION OF HUMAN TUBAL FLUID. Fertility and Sterility. 1985;44:493-498. 5 . LEESE, H. J. 2012. Metabolism of the preimplantation embryo: 40 years on. Reproduction, 2012;143:417-427. 6 . BRINSTER,   R.   L.   OXIDATION   OF   PYRUVATE   AND   GLUCOSE   BY   OOCYTES   OF   MOUSE   AND   RHESUS   MONKEY.   Journal   of   Reproduction   and   Fertility, 1971;24:187. 7 . GARDNER,   D.   K.,   WALE,   P.   L.,   COLLINS,   R.   &   LANE,   M.   Glucose   consumption   of   single   post-compaction   human   embryos   is   predictive   of   embryo   sex   and live birth outcome. Human Reproduction, 2011;26:1981-1986. 8 . LOPES,   A.   S.,   LANE,   M.   &   THOMPSON,   J.   G.   Oxygen   consumption   and   ROS   production   are   increased   at   the   time   of   fertilization   and   cell   cleavage   in bovine zygotes. Human Reproduction, 2010;25:2762-2773. 9 . CONAGHAN,   J.,   HANDYSIDE,   A.   H.,   WINSTON,   R.   M.   L.   &   LEESE,   H.   J.   EFFECTS   OF   PYRUVATE   AND   GLUCOSE   ON   THE   DEVELOPMENT   OF   HUMAN PREIMPLANTATION EMBRYOS IN-VITRO. Journal of Reproduction and Fertility, 1993;99:87-95. 1 0 . BRISON,   D.   R.,   HOUGHTON,   F.   D.,   FALCONER,   D.,   ROBERTS,   S.   A.,   HAWKHEAD,   J.,   HUMPHERSON,   P.   G.,   LIEBERMAN,   B.   A.   &   LEESE,   H.   J.   Identification   of viable embryos in IVF by non-invasive measurement of amino acid turnover. Human Reproduction 2004;19:2319-2324. 1 1 . KHANDOKER,   M.   &   TSUJII,   H.   Effect   of   exogenous   fatty   acids   on   in   vitro   development   of   rat   embryos.   Asian-Australasian   Journal   of   Animal   Sciences, 1999;12:169-173. 1 2 . DOWNS,    S.    M.,    MOSEY,    J.    L.    &    KLINGER,    J.    Fatty    Acid    Oxidation    and    Meiotic    Resumption    in    Mouse    Oocytes.    Molecular    Reproduction    and Development, 2009;76:844-853. 1 3 . VALSANGKAR,   D.   &   DOWNS,   S.   M.   A   Requirement   for   Fatty   Acid   Oxidation   in   the   Hormone-Induced   Meiotic   Maturation   of   Mouse   Oocytes.   Biology   of Reproduction, 2013;89. 1 4 . MCKEEGAN,   P.   J.   &   STURMEY,   R.   G.   The   role   of   fatty   acids   in   oocyte   and   early   embryo   development.   Reproduction   Fertility   and   Development, 2012;24:59-67. 1 5 . STUBBS,   C.   D.   &   SMITH,   A.   D.   The   modification   of   mammalian   membrane   polyunsaturated   fatty   acid   composition   in   relation   to   membrane   fluidity   and function. Biochim Biophys Acta, 1984;779:89-137. 1 6 . HIRATA,   F.,   STRITTMATTER,   W.   J.   &   AXELROD,   J.   Beta-Adrenergic   receptor   agonists   increase   phospholipid   methylation,   membrane   fluidity,   and   beta- adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A, 1979;76:368-72. 1 7 . FERGUSON, E. M. & LEESE, H. J. Triglyceride content of bovine oocytes and early embryos. Journal of Reproduction and Fertility, 1999;116:373-378. 1 8 . IRITANI, A., SATO, E. & NISHIKAWA, Y. Secretion rates and chemical composition of oviduct and uterine fluids in sows. J Anim Sci, 1974;39:582-8. 1 9 . KANE,   M.   T.   FATTY-ACIDS   AS   ENERGY-SOURCES   FOR   CULURE   OF   ONE-CELL   RABBIT   OVA   TO   VIABLE   MORULAE.   Biology   of   Reproduction,   1979;20:323- 332. 2 0 . MENEZO,   Y.,   RENARD,   J.   P.,   DELOBEL,   B.   &   PAGEAUX,   J.   F.   Kinetic   study   of   fatty   acid   composition   of   day   7   to   day   14   cow   embryos.   Biol   Reprod, 1982;26:787-90. 2 1 . SALLEH, N. Diverse Roles of Prostaglandins in Blastocyst Implantation. Scientific World Journal, 2014;11. 2 2 . MCKEEGAN,   P.   J.   &   STURMEY,   R.   G.   The   role   of   fatty   acids   in   oocyte   and   early   embryo   development.   Reproduction,   fertility,   and   development, 2011;24:59-67. 2 3 . SUMMERS,   M.   C.,   BHATNAGAR,   P.   R.,   LAWITTS,   J.   A.   &   BIGGERS,   J.   D.   FERTILIZATION   IN-VITRO   OF   MOUSE   OVA   FROM   INBRED   AND   OUTBRED   STRAINS   - COMPLETE PREIMPLANTATION EMBRYO DEVELOPMENT IN GLUCOSE-SUPPLEMENTED KSOM. Biology of Reproduction, 1995;53:431-437. 2 4 . LAWITTS, J. A. & BIGGERS, J. D. CULTURE OF PREIMPLANTATION EMBRYOS. Guide to Techniques in Mouse Development, 1993;225:153-164. 2 5 . BALABAN,   B.,   SAKKAS,   D.   &   GARDNER,   D.   K.      Laboratory   Procedures   for   Human   In   Vitro   Fertilization.   Seminars   in   Reproductive   Medicine,   2014;32:272- 282. 2 6 . JAMEEL,   T.   Sperm   swim-up:   a   simple   and   effective   technique   of   semen   processing   for   intrauterine   insemination.   JPMA.   The   Journal   of   the   Pakistan Medical Association, 2008;58:71-4. 2 7 . HANNAN,   N.   J.,   PAIVA,   P.,   MEEHAN,   K.   L.,   ROMBAUTS,   L.   J.   F.,   GARDNER,   D.   K.   &   SALAMONSEN,   L.A.   Analysis   of   Fertility-Related   Soluble   Mediators   in Human Uterine Fluid Identifies VEGF as a Key Regulator of Embryo Implantation. Endocrinology, 2011;152:4948-4956. 2 8 . LOEWENSTEIN,   J.   E.   &   COHEN,   A.   I.   DRY   MASS   LIPID   CONTENT   +   PROTEIN   CONTENT   OF   INTACT   +   ZONA-FREE   MOUSE   OVUM.   Journal   of   Embryology and Experimental Morphology, 1964;12:113. 2 9 . MATORRAS,   R.,   RUIZ,   J.   I.,   MENDOZA,   R.,   RUIZ,   N.,   SANJURJO,   P.   &   RODRIGUEZ-ESCUDERO,   F.   J.   Fatty   acid   composition   of   fertilization-failed   human oocytes. Human Reproduction, 1998;13:2227-2230. 3 0 . GURAYA, S. S. A HISTOCHEMICAL ANALYSIS OF LIPID YOLK DEPOSITION IN OOCYTES OF CAT AND DOG. Journal of Experimental Zoology, 1965;160:123. 3 1 . AARDEMA,   H.,   VOS,   P.   L.,   LOLICATO,   F.,   ROELEN,   B.   A.,   KNIJN,   H.   M.,   VAANDRAGER,   A.   B.,   HELMS,   J.   B.   &   GADELLA,   B.   M.      Oleic   acid   prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod, 2011;85:62-9. 3 2 . MAREI,   W.   F.,   WATHES,   D.   C.   &   FOULADI-NASHTA,   A.   A.      Impact   of   linoleic   acid   on   bovine   oocyte   maturation   and   embryo   development.   Reproduction 2010;139:979-988. 3 3 . QUINN,   P.   &   WHITTINGHAM,   D.   G.   EFFECT   OF   FATTY-ACIDS   ON   FERTILIZATION   AND   DEVELOPMENT   OF   MOUSE   EMBRYOS   INVITRO.   Journal   of Andrology, 1982;3:440-444. 3 4 . ADAMIAK,   S.   J.,   POWELL,   K.,   ROOKE,   J.   A.,   WEBB,   R.   &   SINCLAIR,   K.   D.   Body   composition,   dietary   carbohydrates   and   fatty   acids   determine   post- fertilisation development of bovine oocytes in vitro. Reproduction, 2006;131:247-258. 3 5 . HOUGHTON,   F.   D.,   THOMPSON,   J.   G.,   KENNEDY,   C.   J.   &   LEESE,   H.   J.   Oxygen   consumption   and   energy   metabolism   of   the   early   mouse   embryo. Molecular Reproduction and Development, 1996;44:476-485. 3 6 . MALHI, H. & GORES, G. J. Molecular Mechanisms of Lipotoxicity in Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2008;28:360-369. 3 7 . BORRADAILE,   N.   M.,   HAN,   X.,   HARP,   J.   D.,   GALE,   S.   E.,   ORY,   D.   S.   &   SCHAFFER,   J.   E.   Disruption   of   endoplasmic   reticulum   structure   and   integrity   in lipotoxic cell death. Journal of Lipid Research, 2006b;47:2726-2737. 3 8 . WU,   L.   L.-Y.,   DUNNING,   K.   R.,   YANG,   X.,   RUSSELL,   D.   L.,   LANE,   M.,   NORMAN,   R.   J.   &   ROBKER,   R.   L.   High-Fat   Diet   Causes   Lipotoxicity   Responses   in Cumulus-Oocyte Complexes and Decreased Fertilization Rates. Endocrinology, 2010;151: 5438-5445. 3 9 . BORRADAILE,   N.   M.,   HAN,   X.,   HARP,   J.   D.,   GALE,   S.   E.,   ORY,   D.   S.   &   SCHAFFER,   J.   E.   Disruption   of   endoplasmic   reticulum   structure   and   integrity   in lipotoxic cell death. J Lipid Res, 2006a;47:2726-37. 4 0 . RUTKOWSKI, D. T. & KAUFMAN, R. J. A trip to the ER: coping with stress. Trends Cell Biol, 2004;14:20-8. 4 1 . SCHRAUWEN, P. & HESSELINK, M. K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes,  2004;53:1412-7. 4 2 . PENZO,   D.,   TAGLIAPIETRA,   C.,   COLONNA,   R.,   PETRONILLI,   V.   &   BERNARDI,   P.   Effects   of   fatty   acids   on   mitochondria:   implications   for   cell   death. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2002;1555:160-165. 4 3 . HILLMAN,   N.   &   FLYNN,   T.   J.   The   metabolism   of   exogenous   fatty   acids   by   preimplantation   mouse   embryos   developing   in   vitro.   Journal   of   embryology and experimental morphology, 1980;56:157-68. 4 4 . BETTERIDGE, K. J. & FLECHON, J. E. THE ANATOMY AND PHYSIOLOGY OF PRE-ATTACHMENT BOVINE EMBRYOS. Theriogenology, 1988;29:155-187. 4 5 . YAMADA,    M.,    TAKANASHI,    K.,    HAMATANI,    T.,    HIRAYAMA,    A.,    AKUTSU,    H.,    FUKUNAGA,    T.,    OGAWA,    S.,    SUGAWARA,    K.,    SHINODA,    K.,    SOGA,    T., UMEZAWA,   A.,   KUJI,   N.,   YOSHIMURA,   Y.   &   TOMITA,   M.   A   medium-chain   fatty   acid   as   an   alternative   energy   source   in   mouse   preimplantation development. Sci. Rep., 2012;2. 4 6 . WILEY,    L.    M.    CAVITATION    IN    THE    MOUSE    PREIMPLANTATION    EMBRYO    -    NA/K-ATPASE    AND    THE    ORIGIN    OF    NASCENT    BLASTOCELE    FLUID. Developmental Biology. 1984;105:330-342. 4 7 . MCEVOY,   T.   G.,   COULL,   G.   D.,   BROADBENT,   P.   J.,   HUTCHINSON,   J.   S.   M.   &   SPEAKE,   B.   K.   Fatty   acid   composition   of   lipids   in   immature   cattle,   pig   and sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility. 2000;118:163-170. 4 8 . STURMEY,    R.    G.,    REIS,    A.,    LEESE,    H.    J.    &    MCEVOY,    T.    G.    Role    of    Fatty    Acids    in    Energy    Provision    During    Oocyte    Maturation    and    Early    Embryo Development. Reproduction in Domestic Animals, 2009;44:50-58. 4 9 . VAN   HOECK,   V.,   STURMEY,   R.   G.,   BERMEJO-ALVAREZ,   P.,   RIZOS,   D.,   GUTIERREZ-ADAN,   A.,   LEESE,   H.   J.,   BOLS,   P.   E.   J.   &   LEROY,   J.   L.   M.   R.   Elevated   Non- Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise Early Embryo Physiology. 2011;Plos One, 6. 5 0 . LEROY,   J.,   VANHOLDER,   T.,   MATEUSEN,   B.,   CHRISTOPHE,   A.,   OPSOMER,   G.,   DE   KRUIF,   A.,   GENICOT,   G.   &   VAN   SOOM,   A.   Non-esterified   fatty   acids   in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 2005b;130:485-495. 5 1 . LU,   Z.   H.,   MU,   Y.   M.,   WANG,   B.   A.,   LI,   X.   L.,   LU,   J.   M.,   LI,   J.   Y.,   PAN,   C.   Y.,   YANASE,   T.   &   NAWATA,   H.   Saturated   free   fatty   acids,   palmitic   acid   and   stearic acid,   induce   apoptosis   by   stimulation   of   ceramide   generation   in   rat   testicular   Leydig   cell.   Biochemical   and   Biophysical   Research   Communications, 2003;303:1002-1007. 5 2 . HOUGHTON,   F.   D.,   THOMPSON,   J.   G.,   KENNEDY,   C.   J.   &   LEESE,   H.   J.   Oxygen   consumption   and   energy   metabolism   of   the   early   mouse   embryo. Molecular Reproduction and Development, 1996;44:476-485. 53. MOLLER, P. & LOFT, S. Oxidative Damage to DNA and Lipids as Biomarkers of Exposure to Air Pollution. Environmental Health Perspectives, 2010;118:1126-1136.





HOME ABOUT US EDITORIAL BOARD AUTHOR GUIDELINES SPECIAL SERVICES CONTACT US HOME ABOUT US EDITORIAL BOARD AUTHOR GUIDELINES SPECIAL SERVICES CONTACT US
Volume 4 |Issue 4.1 |  2016 Date of Publication:  31 October 2016
DOWNLOAD PDF
TABLE OF CONTENTS