Quick Links
Archives
How
to
cite
this
Article:
Anagha
Nawal,
Peter
Temple
Smith,
Sally
Catt.
EFFECT
OF
CHEMICALLY
DEFINED
LIPID
MOLECULES
ON
BLASTOCYST DEVELOPMENT AND OUTGROWTH
. Int J Anatomy Res 2016;4(4):2950-2958. DOI: 10.16965/ijar.2016.380.
Type of Article: Original Research
DOI: http://dx.doi.org/10.16965/ijar.2016.380
Page No.: 2950-2958
EFFECT OF CHEMICALLY DEFINED LIPID MOLECULES ON BLASTOCYST DEVELOPMENT AND OUTGROWTH
Anagha Nawal *
1
, Peter Temple Smith
2
, Sally Catt
3
.
*1
Assistant Professor, Dept. of Anatomy, Mahatma Gandhi Medical College, Aurangabad [MS], India.
2
Associate Professor and Director,
EPRD
Department Southern Clinical School, Monash University Clayton, Australia.
3
Coordinator of MCE, EPRD
Department Southern Clinical School, Monash University Clayton, Australia.
Correspondence
Address:
Dr.
Anagha
Nawal,
Assistant
Professor,
Dept.
of
Anatomy,
Mahatma
Gandhi
Medical
College,
Aurangabad
[MS],
India.
E-Mail:
dranagha2000@gmail.com
ABSTRACT
Introduction:
Fatty
acids
play
a
diverse
role
in
early
embryonic
development
and
implantation.
This
study
examined
the
effect
of
a
chemically
defined
additive containing saturated and unsaturated fatty acids on mouse fertilization and embryo development in vitro.
Objective:
To
observe
the
effect
of
a
chemically
defined
addition
of
fatty
acids
on
in-vitro
fertilization,
early
embryonic
development
and
blastocyst
outgrowth
Study
Design:
F1
mice
(4-6
weeks)
were
superovulated
and
16
hours
later
oocytes
were
collected
and
prepared
for
IVF
using
spermatozoa
from
F1
males.
Oocytes
(n=355)
were
randomly
allocated
to
global
fertilization
medium
with
(+)
or
without
(-)
chemically
defined
lipid
(#
11905-031,
Life
Global
Technologies).
Fertilization
was
checked
(2-PN)
6-9hrs
after
insemination
and
embryos
were
grown
up
in
blastocyst
culture
medium
+
lipid
additive
or
controls.
Embryo
development
was
monitored
daily
until
D5
when
blastocysts
were
transferred
to
96-well
plates.
Blastocyst
outgrowths
were
imaged
on
D6,
D7
and
D9
using
XY-Cyclone
software.
Data
was
analyzed
(Chi-squares)
to
compare
the
effect
of
lipid
on
fertilization
rate,
blastocyst
development
and
outgrowths.
Result:
Oocytes
(n=355)
randomly
allocated
to
control
(n=170)
or
+lipid
groups
for
fertilization
showed
no
difference
in
fertilization
rates
in
medium
with
(n=155)
or
without
lipid.
Addition
of
lipid
to
blastocyst
medium
resulted
in
a
significant
increase
(p<0.05)
in
blastocyst
formation
(73%
vs
87%).
but
produced no difference in blastocyst hatching or outgrowth area.
Conclusion
:
A
chemically
defined
lipid
additive
promoted
embryonic
development
in
vitro.
Further
studies
are
needed
to
examine
the
dose-response
effect
of lipid on fertilization and embryo development.
KEY WORDS: Blastocysts, Implantation, Fatty acids and In vitro culture.
References
1
.
WASSARMAN,
P.
A.,
JOVINE,
L.,
LITSCHER,
E.
S.,
QI,
H.
Y.
&
WILLIAMS,
Z.
Egg-sperm
interactions
at
fertilization
in
mammals.
European
Journal
of
Obstetrics Gynecology and Reproductive Biology, 2004;115:S57-S60.
2
.
GARDNER,
D.
K.,
POOL,
T.
B.
&
LANE,
M.
Embryo
nutrition
and
energy
metabolism
and
its
relationship
to
embryo
growth,
differentiation,
and
viability.
Seminars in Reproductive Medicine, 2000;18:205-218.
3
.
TERVIT,
H.
R.,
ROWSON,
L.
E.
A.
&
WHITTING.DG.
SUCCESSFUL
CULTURE
IN-VITRO
OF
SHEEP
AND
CATTLE
OVA.
Journal
of
Reproduction
and
Fertility,
1972;30:493-495
4
.
QUINN,
P.,
KERIN,
J.
F.
&
WARNES,
G.
M.
IMPROVED
PREGNANCY
RATE
IN
HUMAN
INVITRO
FERTILIZATION
WITH
THE
USE
OF
A
MEDIUM
BASED
ON
THE COMPOSITION OF HUMAN TUBAL FLUID. Fertility and Sterility. 1985;44:493-498.
5
.
LEESE, H. J. 2012. Metabolism of the preimplantation embryo: 40 years on. Reproduction, 2012;143:417-427.
6
.
BRINSTER,
R.
L.
OXIDATION
OF
PYRUVATE
AND
GLUCOSE
BY
OOCYTES
OF
MOUSE
AND
RHESUS
MONKEY.
Journal
of
Reproduction
and
Fertility,
1971;24:187.
7
.
GARDNER,
D.
K.,
WALE,
P.
L.,
COLLINS,
R.
&
LANE,
M.
Glucose
consumption
of
single
post-compaction
human
embryos
is
predictive
of
embryo
sex
and
live birth outcome. Human Reproduction, 2011;26:1981-1986.
8
.
LOPES,
A.
S.,
LANE,
M.
&
THOMPSON,
J.
G.
Oxygen
consumption
and
ROS
production
are
increased
at
the
time
of
fertilization
and
cell
cleavage
in
bovine zygotes. Human Reproduction, 2010;25:2762-2773.
9
.
CONAGHAN,
J.,
HANDYSIDE,
A.
H.,
WINSTON,
R.
M.
L.
&
LEESE,
H.
J.
EFFECTS
OF
PYRUVATE
AND
GLUCOSE
ON
THE
DEVELOPMENT
OF
HUMAN
PREIMPLANTATION EMBRYOS IN-VITRO. Journal of Reproduction and Fertility, 1993;99:87-95.
1
0
.
BRISON,
D.
R.,
HOUGHTON,
F.
D.,
FALCONER,
D.,
ROBERTS,
S.
A.,
HAWKHEAD,
J.,
HUMPHERSON,
P.
G.,
LIEBERMAN,
B.
A.
&
LEESE,
H.
J.
Identification
of
viable embryos in IVF by non-invasive measurement of amino acid turnover. Human Reproduction 2004;19:2319-2324.
1
1
.
KHANDOKER,
M.
&
TSUJII,
H.
Effect
of
exogenous
fatty
acids
on
in
vitro
development
of
rat
embryos.
Asian-Australasian
Journal
of
Animal
Sciences,
1999;12:169-173.
1
2
.
DOWNS,
S.
M.,
MOSEY,
J.
L.
&
KLINGER,
J.
Fatty
Acid
Oxidation
and
Meiotic
Resumption
in
Mouse
Oocytes.
Molecular
Reproduction
and
Development, 2009;76:844-853.
1
3
.
VALSANGKAR,
D.
&
DOWNS,
S.
M.
A
Requirement
for
Fatty
Acid
Oxidation
in
the
Hormone-Induced
Meiotic
Maturation
of
Mouse
Oocytes.
Biology
of
Reproduction, 2013;89.
1
4
.
MCKEEGAN,
P.
J.
&
STURMEY,
R.
G.
The
role
of
fatty
acids
in
oocyte
and
early
embryo
development.
Reproduction
Fertility
and
Development,
2012;24:59-67.
1
5
.
STUBBS,
C.
D.
&
SMITH,
A.
D.
The
modification
of
mammalian
membrane
polyunsaturated
fatty
acid
composition
in
relation
to
membrane
fluidity
and
function. Biochim Biophys Acta, 1984;779:89-137.
1
6
.
HIRATA,
F.,
STRITTMATTER,
W.
J.
&
AXELROD,
J.
Beta-Adrenergic
receptor
agonists
increase
phospholipid
methylation,
membrane
fluidity,
and
beta-
adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci U S A, 1979;76:368-72.
1
7
.
FERGUSON, E. M. & LEESE, H. J. Triglyceride content of bovine oocytes and early embryos. Journal of Reproduction and Fertility, 1999;116:373-378.
1
8
.
IRITANI, A., SATO, E. & NISHIKAWA, Y. Secretion rates and chemical composition of oviduct and uterine fluids in sows. J Anim Sci, 1974;39:582-8.
1
9
.
KANE,
M.
T.
FATTY-ACIDS
AS
ENERGY-SOURCES
FOR
CULURE
OF
ONE-CELL
RABBIT
OVA
TO
VIABLE
MORULAE.
Biology
of
Reproduction,
1979;20:323-
332.
2
0
.
MENEZO,
Y.,
RENARD,
J.
P.,
DELOBEL,
B.
&
PAGEAUX,
J.
F.
Kinetic
study
of
fatty
acid
composition
of
day
7
to
day
14
cow
embryos.
Biol
Reprod,
1982;26:787-90.
2
1
.
SALLEH, N. Diverse Roles of Prostaglandins in Blastocyst Implantation. Scientific World Journal, 2014;11.
2
2
.
MCKEEGAN,
P.
J.
&
STURMEY,
R.
G.
The
role
of
fatty
acids
in
oocyte
and
early
embryo
development.
Reproduction,
fertility,
and
development,
2011;24:59-67.
2
3
.
SUMMERS,
M.
C.,
BHATNAGAR,
P.
R.,
LAWITTS,
J.
A.
&
BIGGERS,
J.
D.
FERTILIZATION
IN-VITRO
OF
MOUSE
OVA
FROM
INBRED
AND
OUTBRED
STRAINS
-
COMPLETE PREIMPLANTATION EMBRYO DEVELOPMENT IN GLUCOSE-SUPPLEMENTED KSOM. Biology of Reproduction, 1995;53:431-437.
2
4
.
LAWITTS, J. A. & BIGGERS, J. D. CULTURE OF PREIMPLANTATION EMBRYOS. Guide to Techniques in Mouse Development, 1993;225:153-164.
2
5
.
BALABAN,
B.,
SAKKAS,
D.
&
GARDNER,
D.
K.
Laboratory
Procedures
for
Human
In
Vitro
Fertilization.
Seminars
in
Reproductive
Medicine,
2014;32:272-
282.
2
6
.
JAMEEL,
T.
Sperm
swim-up:
a
simple
and
effective
technique
of
semen
processing
for
intrauterine
insemination.
JPMA.
The
Journal
of
the
Pakistan
Medical Association, 2008;58:71-4.
2
7
.
HANNAN,
N.
J.,
PAIVA,
P.,
MEEHAN,
K.
L.,
ROMBAUTS,
L.
J.
F.,
GARDNER,
D.
K.
&
SALAMONSEN,
L.A.
Analysis
of
Fertility-Related
Soluble
Mediators
in
Human Uterine Fluid Identifies VEGF as a Key Regulator of Embryo Implantation. Endocrinology, 2011;152:4948-4956.
2
8
.
LOEWENSTEIN,
J.
E.
&
COHEN,
A.
I.
DRY
MASS
LIPID
CONTENT
+
PROTEIN
CONTENT
OF
INTACT
+
ZONA-FREE
MOUSE
OVUM.
Journal
of
Embryology
and Experimental Morphology, 1964;12:113.
2
9
.
MATORRAS,
R.,
RUIZ,
J.
I.,
MENDOZA,
R.,
RUIZ,
N.,
SANJURJO,
P.
&
RODRIGUEZ-ESCUDERO,
F.
J.
Fatty
acid
composition
of
fertilization-failed
human
oocytes. Human Reproduction, 1998;13:2227-2230.
3
0
.
GURAYA, S. S. A HISTOCHEMICAL ANALYSIS OF LIPID YOLK DEPOSITION IN OOCYTES OF CAT AND DOG. Journal of Experimental Zoology, 1965;160:123.
3
1
.
AARDEMA,
H.,
VOS,
P.
L.,
LOLICATO,
F.,
ROELEN,
B.
A.,
KNIJN,
H.
M.,
VAANDRAGER,
A.
B.,
HELMS,
J.
B.
&
GADELLA,
B.
M.
Oleic
acid
prevents
detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod, 2011;85:62-9.
3
2
.
MAREI,
W.
F.,
WATHES,
D.
C.
&
FOULADI-NASHTA,
A.
A.
Impact
of
linoleic
acid
on
bovine
oocyte
maturation
and
embryo
development.
Reproduction
2010;139:979-988.
3
3
.
QUINN,
P.
&
WHITTINGHAM,
D.
G.
EFFECT
OF
FATTY-ACIDS
ON
FERTILIZATION
AND
DEVELOPMENT
OF
MOUSE
EMBRYOS
INVITRO.
Journal
of
Andrology, 1982;3:440-444.
3
4
.
ADAMIAK,
S.
J.,
POWELL,
K.,
ROOKE,
J.
A.,
WEBB,
R.
&
SINCLAIR,
K.
D.
Body
composition,
dietary
carbohydrates
and
fatty
acids
determine
post-
fertilisation development of bovine oocytes in vitro. Reproduction, 2006;131:247-258.
3
5
.
HOUGHTON,
F.
D.,
THOMPSON,
J.
G.,
KENNEDY,
C.
J.
&
LEESE,
H.
J.
Oxygen
consumption
and
energy
metabolism
of
the
early
mouse
embryo.
Molecular Reproduction and Development, 1996;44:476-485.
3
6
.
MALHI, H. & GORES, G. J. Molecular Mechanisms of Lipotoxicity in Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 2008;28:360-369.
3
7
.
BORRADAILE,
N.
M.,
HAN,
X.,
HARP,
J.
D.,
GALE,
S.
E.,
ORY,
D.
S.
&
SCHAFFER,
J.
E.
Disruption
of
endoplasmic
reticulum
structure
and
integrity
in
lipotoxic cell death. Journal of Lipid Research, 2006b;47:2726-2737.
3
8
.
WU,
L.
L.-Y.,
DUNNING,
K.
R.,
YANG,
X.,
RUSSELL,
D.
L.,
LANE,
M.,
NORMAN,
R.
J.
&
ROBKER,
R.
L.
High-Fat
Diet
Causes
Lipotoxicity
Responses
in
Cumulus-Oocyte Complexes and Decreased Fertilization Rates. Endocrinology, 2010;151: 5438-5445.
3
9
.
BORRADAILE,
N.
M.,
HAN,
X.,
HARP,
J.
D.,
GALE,
S.
E.,
ORY,
D.
S.
&
SCHAFFER,
J.
E.
Disruption
of
endoplasmic
reticulum
structure
and
integrity
in
lipotoxic cell death. J Lipid Res, 2006a;47:2726-37.
4
0
.
RUTKOWSKI, D. T. & KAUFMAN, R. J. A trip to the ER: coping with stress. Trends Cell Biol, 2004;14:20-8.
4
1
.
SCHRAUWEN, P. & HESSELINK, M. K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes, 2004;53:1412-7.
4
2
.
PENZO,
D.,
TAGLIAPIETRA,
C.,
COLONNA,
R.,
PETRONILLI,
V.
&
BERNARDI,
P.
Effects
of
fatty
acids
on
mitochondria:
implications
for
cell
death.
Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2002;1555:160-165.
4
3
.
HILLMAN,
N.
&
FLYNN,
T.
J.
The
metabolism
of
exogenous
fatty
acids
by
preimplantation
mouse
embryos
developing
in
vitro.
Journal
of
embryology
and experimental morphology, 1980;56:157-68.
4
4
.
BETTERIDGE, K. J. & FLECHON, J. E. THE ANATOMY AND PHYSIOLOGY OF PRE-ATTACHMENT BOVINE EMBRYOS. Theriogenology, 1988;29:155-187.
4
5
.
YAMADA,
M.,
TAKANASHI,
K.,
HAMATANI,
T.,
HIRAYAMA,
A.,
AKUTSU,
H.,
FUKUNAGA,
T.,
OGAWA,
S.,
SUGAWARA,
K.,
SHINODA,
K.,
SOGA,
T.,
UMEZAWA,
A.,
KUJI,
N.,
YOSHIMURA,
Y.
&
TOMITA,
M.
A
medium-chain
fatty
acid
as
an
alternative
energy
source
in
mouse
preimplantation
development. Sci. Rep., 2012;2.
4
6
.
WILEY,
L.
M.
CAVITATION
IN
THE
MOUSE
PREIMPLANTATION
EMBRYO
-
NA/K-ATPASE
AND
THE
ORIGIN
OF
NASCENT
BLASTOCELE
FLUID.
Developmental Biology. 1984;105:330-342.
4
7
.
MCEVOY,
T.
G.,
COULL,
G.
D.,
BROADBENT,
P.
J.,
HUTCHINSON,
J.
S.
M.
&
SPEAKE,
B.
K.
Fatty
acid
composition
of
lipids
in
immature
cattle,
pig
and
sheep oocytes with intact zona pellucida. Journal of Reproduction and Fertility. 2000;118:163-170.
4
8
.
STURMEY,
R.
G.,
REIS,
A.,
LEESE,
H.
J.
&
MCEVOY,
T.
G.
Role
of
Fatty
Acids
in
Energy
Provision
During
Oocyte
Maturation
and
Early
Embryo
Development. Reproduction in Domestic Animals, 2009;44:50-58.
4
9
.
VAN
HOECK,
V.,
STURMEY,
R.
G.,
BERMEJO-ALVAREZ,
P.,
RIZOS,
D.,
GUTIERREZ-ADAN,
A.,
LEESE,
H.
J.,
BOLS,
P.
E.
J.
&
LEROY,
J.
L.
M.
R.
Elevated
Non-
Esterified Fatty Acid Concentrations during Bovine Oocyte Maturation Compromise Early Embryo Physiology. 2011;Plos One, 6.
5
0
.
LEROY,
J.,
VANHOLDER,
T.,
MATEUSEN,
B.,
CHRISTOPHE,
A.,
OPSOMER,
G.,
DE
KRUIF,
A.,
GENICOT,
G.
&
VAN
SOOM,
A.
Non-esterified
fatty
acids
in
follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction, 2005b;130:485-495.
5
1
.
LU,
Z.
H.,
MU,
Y.
M.,
WANG,
B.
A.,
LI,
X.
L.,
LU,
J.
M.,
LI,
J.
Y.,
PAN,
C.
Y.,
YANASE,
T.
&
NAWATA,
H.
Saturated
free
fatty
acids,
palmitic
acid
and
stearic
acid,
induce
apoptosis
by
stimulation
of
ceramide
generation
in
rat
testicular
Leydig
cell.
Biochemical
and
Biophysical
Research
Communications,
2003;303:1002-1007.
5
2
.
HOUGHTON,
F.
D.,
THOMPSON,
J.
G.,
KENNEDY,
C.
J.
&
LEESE,
H.
J.
Oxygen
consumption
and
energy
metabolism
of
the
early
mouse
embryo.
Molecular Reproduction and Development, 1996;44:476-485.
53.
MOLLER, P. & LOFT, S. Oxidative Damage to DNA and Lipids as Biomarkers of Exposure to Air Pollution. Environmental Health Perspectives,
2010;118:1126-1136.