MORPHOLOGICAL VARIATIONS OF MUSCLE PLANTARIS: ANATOMICAL AND CLINICAL INSIGHT

Mohini M Joshi*1, Subhash D Joshi 2, Sharda S Joshi 3.

*1 Associate Professor, Department of Anatomy, Rural Medical College, Pravra Institute of Medical Sciences, Loni, Dist.Ahmadnagar Maharashtra, India.
2 Dean, Arbindo Institute of Medical Sciences, Indore, India.
3 Professor and Head, Department of Anatomy, Arbindo Institute of Medical Sciences, Indore, India.

ABSTRACT

Background: Plantaris is the largest muscle in mammals other than primates. Plantaris muscle has been a subject of much confusion and Evolutionists have speculated on its phylogenetic significance, as a vestigial organ, while surgeons have removed it ‘useless vestige’ to employ its tendon as a spare part for the surgical repair. In humans it is reduced greatly in size, power, and function and may even be absent.

Aim: With this background the aim of the present work is to study morphology, describe the observed variations of the Plantaris muscle, and to discuss the functional significance of Plantaris muscle.

Methodology: For the present work 84 limbs available in the department of Anatomy were dissected. The posterior aspect of the knee was dissected using standard surgical equipment and dissection techniques. The Plantaris muscle was isolated and length of fleshy belly and tendon were measured. Any variations in origin, insertion and size were recorded.

Result: Variation in insertion of the Plantaris has observed like insertion along medial margin of tendocalcaneus on to calcaneus, in front of tendocalcaneus on to calcaneus, fused to tendocalcaneus and insertion of the Plantaris on deep fascia of leg at the level of ankle. Other variations noted were two bellies of the Plantaris one from lateral supracondylar ridge and other from deep surface of Gastrocnemius, two heads of Plantaris: Both bellies were fused in the lower part producing bipennate arrangement, thin & thick belly of the Plantaris muscle. Variations also observed in relation to origin that the muscle is originating from deep surface of lateral head of Gastrocnemius & in other case origin from capsule. Bicipital Plantaris was seen where one head was originating from capsule of knee joint and other from lateral condyle.

Conclusion: In order to avoid any inadvertent injury during surgical operations, variation of the Plantaris must be borne in mind. Awareness of the insertion pattern of the Plantaris tendon is also important for clinicians in the diagnosis of muscle tears and for surgeons performing reconstructive procedures. Considering the above facts, the existence and importance of the Plantaris muscle cannot be undermined.

KEYWORDS: Plantaris muscle, Variations, Morphology.
supracondylar line and the oblique popliteal ligament [2].

Plantaris is considered a rudimentary muscle. It is large muscle in mammals other than primates. In humans it is reduced greatly in size, power, and function and may even be absent. With this background the aim of the present work is to study morphology, describe the observed variations of the Plantaris muscle, and to discuss the functional significance of Plantaris muscle.

MATERIALS AND METHODS

Present work has carried out on 84 limbs (Right 45; Left 39) available in the department of Anatomy, Rural Medical College, Pravara Institute of Medical Sciences, Loni.

Material: Dissecting instruments, thread, scale, divider, Digital camera (7.1M.P.) and Vernier caliper.

Methods: The posterior aspect of the knee was dissected using standard surgical equipment and dissection techniques. The Plantaris muscle was isolated and carefully traced to the proximal attachment, preserving any connections with surrounding tissue. Any variations in the muscle, its attachment, or relationship to surrounding tissues were noted and photographed using a digital camera. Whole length of muscle was dissected and displayed. Length of fleshy belly and tendon were measured. Any variations in origin, insertion and size were recorded. The variations observed on the dissected specimens were described in detail and then discussed in relation to their theorized functional and clinical importance.

RESULTS AND TABLES

In this study, the Plantaris muscle is shown to have a highly variable anatomy.

Table 1: Length of fleshy belly.

<table>
<thead>
<tr>
<th>Side</th>
<th>Length (cm)</th>
<th>Range (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>8.39</td>
<td>3.5-13</td>
</tr>
<tr>
<td>Left</td>
<td>8.16</td>
<td>6-11.4</td>
</tr>
</tbody>
</table>

It is evident from table 1 that mean length of fleshy belly of the Plantaris muscle was 8.39 cm on right side and 8.16 cm on left side.

Table 2: Length of Tendon.

<table>
<thead>
<tr>
<th>Side</th>
<th>Length (cm)</th>
<th>Range(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>32.8</td>
<td>25-37.7</td>
</tr>
<tr>
<td>Left</td>
<td>33.7</td>
<td>24-40</td>
</tr>
</tbody>
</table>

It is evident from table 2 that mean length of tendon of the Plantaris muscle was 32.8 cm on right side and 33.7 cm on left side.

Table 3: Total length of Plantaris.

<table>
<thead>
<tr>
<th>Side</th>
<th>Fleshy belly(cm)</th>
<th>Tendon(cm)</th>
<th>Total length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>8.39</td>
<td>32.8</td>
<td>41.2</td>
</tr>
<tr>
<td>Left</td>
<td>8.16</td>
<td>33.7</td>
<td>41.87</td>
</tr>
</tbody>
</table>

It is evident from table III that mean total length of the Plantaris muscle was 41.2 cm on right side and 41.87 cm on left side.

Table 4: Absence of Plantaris.

<table>
<thead>
<tr>
<th>Side</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>3</td>
<td>6.66</td>
</tr>
<tr>
<td>Left</td>
<td>5</td>
<td>12.82</td>
</tr>
</tbody>
</table>

It is evident from table IV that Plantaris muscle was absent 6.66% on right side of the leg; while 12.82 % on left side.

Table 5: Insertion of Plantaris.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Insertion of Plantaris</th>
<th>Right (%)</th>
<th>Left (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Along medial margin of tendocalcaneus on to calcaneus</td>
<td>21 (50)</td>
<td>13 (38.23)</td>
</tr>
<tr>
<td>2</td>
<td>In front of tendocalcaneus on to calcaneus</td>
<td>15 (35.71)</td>
<td>13 (38.23)</td>
</tr>
<tr>
<td>3</td>
<td>Fused to tendocalcaneus</td>
<td>4 (9.52)</td>
<td>4 (11.77)</td>
</tr>
<tr>
<td>4</td>
<td>Deep fascia of leg at the level of ankle</td>
<td>2 (4.77)</td>
<td>4 (11.77)</td>
</tr>
</tbody>
</table>

In present study variation in insertion of the Plantaris were observed like insertion along medial margin of tendocalcaneus on to calcaneus, in front of tendocalcaneus on to calcaneus, fused to tendocalcaneus and insertion of the Plantaris on deep fascia of leg at the level of ankle.

Other variations noted were two bellies of the Plantaris one from lateral supracondylar ridge and other from deep surface of Gastrocnemius, two heads of Plantaris: Both bellies were fused in the lower part producing bipennate arrangement, thin and thick belly of the Plantaris muscle. Variations were also observed in relation to origin that Plantaris muscle originating from deep surface of lateral head of Gastrocnemius
DISCUSSION

In present study mean length of fleshy belly of the Plantaris muscle was 8.39 cm on right side and 8.16 cm on left side. Standring, (2005)[2] described the length of fleshy belly 7 to 10 cm. Das et al (2006)[3] found the average of the maximum length of fleshy belly of the Plantaris muscle 8.5 cm. In present study Plantaris muscle was absent 6.66% on right side of the leg; while 12.82 % on left side. Sinnatamby, 1999; Standring, 2005 reported an absence of the Plantaris muscle in approximately 10% of the population [2,4]. In lower extremities examined by Daseler (1943)[1], the Plantaris muscle was absent in 6.67 per cent. Simpson (1991)[5] found the absence of tendon in 9% of the population upon ultrasound study. Ward and Powers, (2004)[6] stated that the absence of the Plantaris may cause weakness in initial flexion of the knee and an increased laxity of the knee during medial and lateral rotation, subsequently increasing the risk of injury to the primary stabilizing ligaments of the knee. In present study variation in insertion of the Plantaris were observed like insertion along medial margin of tendocalcaneus on to calcaneus, in front of tendocalcaneus on to calcaneus, fused to tendocalcaneus & insertion of the Plantaris on deep fascia of leg at the level of ankle. Similarly Das et al (2006) [3] observed that 60% the Plantaris muscle was inserted into the calcaneum, its normal site. In 40%, the insertion was into the superficial fascia of the leg. Cummins and Anson (1946) described that in 47% inserted on calcaneus, 35% in front of tendocalcaneus & 6% medial margin of tendocalcaneus. The absence of the Plantaris muscle may increase the risk of injury to ligaments of the knee. The surgical utilization of the Plantaris tendon is particularly indicated as
a desirable substitute for the fascia lata in hernial repair, tendon transplants, and repair of ligaments [1]. Shuhaiber (2003)[7] put forward a hypothesis, extrapolated from hand surgery, for use of the Plantaris tendon in heart valve repair. This proposal, if implemented, would increase the supply of autogenous donor tissue for valve repair. Pagenstert (2005) [8] described Anatomic procedure for reconstruction of the anterior talofibular and calcaneofibular ligaments with a free Plantaris tendon. Gelberman RH (1985) [9] reported that because of extremely tensile structure; tendon is used for flexor tendon replacement in hand surgery. In order to avoid any injury during surgical operations, the possibility of anomalous insertion of the Plantaris tendon into the superficial fascia of the leg must be borne in mind. The clinical importance of the Plantaris lays in the fact that the slender tendon may often be ruptured at the mid-calf level[10]. Torn Plantaris produces a condition of ‘Tennis leg’. Moore (2006) reported Plantaris muscle as organ of proprioception as it contains a high density of muscle spindles. Menton (2000) [11] also observed that Plantaris acts as highly specialized sensory organs (kinesiological monitor) rather than motor organs. Voss H. (1971) [12] observed that combined weight of triceps surae was 824 grams and Plantaris 10.5 grams. (Ratio 78 to 1). Peck et al (1984) [13] observed that Plantaris have 3.7 muscle spindles per gram compared to 0.67 spindles per gram for triceps surae. (Ratio 5.5 to 1). Fuller understanding will not come from declaring it to be functionless, but rather from investigating its function. The evidence now suggests that it serves as organ of proprioception.

CONCLUSION

In order to avoid any inadvertent injury during surgical operations, variation of the Plantaris must be borne in mind. Awareness of the insertion pattern of the Plantaris tendon is also important for clinicians in the diagnosis of muscle tears and for surgeons performing reconstructive procedures. Considering the above facts, the existence and importance of the Plantaris muscle cannot be undermined.

Conflicts of Interests: None

REFERENCES

How to cite this article: