IJAR.2025.162

Type of Article:  Original Research

Volume 13; Issue 2 (June 2025)

Page No.: 9245-9257

DOI: https://dx.doi.org/10.16965/ijar.2025.162

Copper Induced Hepatic Toxicity in Male Albino Rats and the Possible Protective Effect of Vitamin D

Miriam Ramzy Riad *1, Ahmed Abdelghany Hassan 2, Abdelghany Hassan Abdelghany 3.

*1 Department of Human Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt. ORCiD: https://orcid.org/0009-0007-0993-6306

2 Intern Faculty of Medicine, Alexandria University, Alexandria, Egypt. ORCiD: https://orcid.org/0009-0009-8989-7320

3 Department of Human Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt. ORCiD: https://orcid.org/0000-0002-3206-5314

Corresponding Author: Dr. Miriam Ramzy Riad, PhD, Department of Human Anatomy and Embryology, Alexandria University, Alexandria, Egypt. E-Mail: MEREYAM.RIYADH@ALEXMED.edu.eg  

ABSTRACT

Background: Copper (Cu), a trace element, is safe to consume at low levels. Copper toxicity is often caused by unintentionally ingesting too much Cu from corroded water pipes and from Cu salt-containing creams for burn treatments due to its antimicrobial properties if applied to large areas of burned skin. Unfortunately, Cu-toxicity can extend up to liver cirrhosis. Vitamin D3 (VitD) is known for its efficient antioxidant, anti-inflammatory effects, antiapoptotic and antifibrotic properties.

Aim: the present study is designed to detect the possible protective effect of VitD against the toxic effects of Cu on the liver in rats.

Material and Methods: Thirty adult rats were divided into three groups (10 mice each): Control group, Cu Group B received Cu at a dose of 0.03 mg/kg body weight by gastric gavage and VitD+ Cu Group C received Vitamin D3 at a dose of (600 IU daily) 10 IU/ kg daily together with Cu for 14 days. Blood samples were collected to assess liver functions, liver tissue was examined for oxidative markers, histological and immunohistochemical examinations.

Results: The Cu group B revealed significant increase in AST, ALT and oxidative stress markers. Light microscopic examination showed disturbed hepatic architecture, ballooning of hepatocytes around widened central vein with less acidophilic cytoplasm, pyknotic nuclei and vacuolation. Hepatic sinusoids were dilated and congested between the rays of hepatic cells with dilated portal tracts and inflammatory cellular infiltration around. Liver sections stained by Masson trichrome detected fibrotic changes with increased fibrotic index. Immunohistochemical study showed increase in the proinflammatory cytokine TNFα and decrease in anti-inflammatory IL-10, while TUNEL technique detected increased number of apoptotic cells. Administration of VitD in group C led to a significant reduction in liver dysfunction and oxidative stress, accompanied by marked improvements in histological, immunohistochemical findings and decreased fibrosis and apoptosis.

Conclusion: VitD offers significant protective effects against Cu induced liver damage It has antioxidant, anti-inflammatory, anti-apoptotic and antifibrotic properties on the cellular and functional levels. So, VitD supplementation is recommended either as a therapeutic or a prophylactic measure in liver diseases to reduce OS, alleviate hepatic damage and interrupt the fibrotic process.

Keywords: Copper toxicity, Microscopic anatomy of the liver, Oxidative stress, Pathological anatomy of hepatic fibrosis, Vitamin D.

REFERENCES

[1]. Stevenson J, Barwinska-Sendra A, Tarrant E, Waldron K. Mechanism of action and applications of the antimicrobial properties of copper. Microb Pathog Strateg Combat Sci Technol Educ 2013; 2:468-479.
[2]. Collins JF, Klevay LM. Copper. Adv Nutr 2011; 2(6):520-522.
https://doi.org/10.3945/an.111.001222
PMid:22332094 PMCid:PMC3226389
[3]. Mason KE. A conspectus of research on copper metabolism and requirements of man. J Nutr 1979; 109(11):1979-2066.
https://doi.org/10.1093/jn/109.11.1979
PMid:387922
[4]. Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 2003; 57(9):386-398.
https://doi.org/10.1016/S0753-3322(03)00012-X
PMid:14652164
[5]. Oe S, Miyagawa K, Honma Y, Harada M. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp Cell Res 2016; 347(1):192-200.
https://doi.org/10.1016/j.yexcr.2016.08.003
PMid:27502587
[6]. Fuentealba IC, Aburto EM. Animal models of copper-associated liver disease. Comp Hepatol 2003; 2(1):5.
https://doi.org/10.1186/1476-5926-2-5
PMid:12769823 PMCid:PMC156612
[7]. Gamakaranage CS, Rodrigo C, Weerasinghe S, Gnanathasan A, Puvanaraj V, Fernando H. Complications and management of acute copper sulphate poisoning; a case discussion. J Occup Med Toxicol 2011; 6(1):34.
https://doi.org/10.1186/1745-6673-6-34
PMid:22182712 PMCid:PMC3269987
[8]. Sturniolo GC, Mestriner C, Irato P, Albergoni V, Longo G, D’Incà R. Zinc therapy increases duodenal concentrations of metallothionein and iron in Wilson’s disease patients. Am J Gastroenterol 1999; 94(2):334-338.
https://doi.org/10.1111/j.1572-0241.1999.851_w.x
PMid:10022625
[9]. Fagnano M, Agrelli D, Pascale A, et al. Copper accumulation in agricultural soils: Risks for the food chain and soil microbial populations. Sci Total Environ 2020; 734:139434.
https://doi.org/10.1016/j.scitotenv.2020.139434
PMid:32454337
[10]. Ballabio C, Panagos P, Lugato E, et al. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci Total Environ 2018; 636:282-298.
https://doi.org/10.1016/j.scitotenv.2018.04.268
PMid:29709848
[11]. Semple AB, Parry WH, Phillips DE. Acute copper poisoning. An outbreak traced to contaminated water from a corroded geyser. Lancet 1960; 2(7152):700-701.
https://doi.org/10.1016/S0140-6736(60)91770-0
PMid:13750037
[12]. Chowdhury AK, Ghosh S, Pal D. Acute copper sulphate poisoning. J Indian Med Assoc 1961; 36:330-336.
[13]. Gupta PS, Bhargava SP, Sharma ML. Acute copper sulphate poisoning with special reference to its management with corticosteroid therapy. J Assoc Physicians India 1962; 10:287-292.
[14]. Jacobson AR, Dousset S, Guichard N, Baveye P, Andreux F. Diuron mobility through vineyard soils contaminated with copper. Environ Pollut 2005; 138(2):250-259.
https://doi.org/10.1016/j.envpol.2005.04.004
PMid:15951080
[15]. Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger JC. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 2010; 36(1):138-151.
https://doi.org/10.1016/j.envint.2009.10.005
PMid:19913914
[16]. Jones G, Prosser DE, Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 2014; 55(1):13-31.
https://doi.org/10.1194/jlr.R031534
PMid:23564710 PMCid:PMC3927478
[17]. Tuckey RC, Cheng CYS, Slominski AT. The serum vitamin D metabolome: What we know and what is still to discover. J Steroid Biochem Mol Biol 2019; 186:4-21.
https://doi.org/10.1016/j.jsbmb.2018.09.003
PMid:30205156 PMCid:PMC6342654
[18]. Yagmurca M, Bas O, Mollaoglu H, et al. Protective effects of erdosteine on doxorubicin-induced hepatotoxicity in rats. Arch Med Res 2007; 38(4):380-385.
https://doi.org/10.1016/j.arcmed.2007.01.007
PMid:17416283
[19]. BaSalamah MA, Abdelghany AH, El-Boshy M, Ahmad J, Idris S, Refaat B. Vitamin D alleviates lead induced renal and testicular injuries by immunomodulatory and antioxidant mechanisms in rats. Sci Rep 2018; 8(1):4853.
https://doi.org/10.1038/s41598-018-23258-w
PMid:29556070 PMCid:PMC5859277
[20]. Pritchett-Corning KR, Chang FT, Festing MF. Breeding and housing laboratory rats and mice in the same room does not affect the growth or reproduction of either species. J Am Assoc Lab Anim Sci. 2009;48(5):492-8.
[21]. El-Boshy ME, Risha EF, Abdelhamid FM, Mubarak MS, Hadda TB. Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol 2015; 29:104-110.
https://doi.org/10.1016/j.jtemb.2014.05.009
PMid:24954678
[22]. Fernández I, Peña A, Del Teso N, Pérez V, Rodríguez-Cuesta J. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J Am Assoc Lab Anim Sci 2010; 49(2):202-206.
[23]. Banchroft J, Turner D. Theory and practice of histological techniques. 4th ed. New York: Churchil Livingstone; 1996.
[24]. Refaat B, Abdelghany AH, BaSalamah MA, El-Boshy M, Ahmad J, Idris S. Acute and Chronic Iron Overloading Differentially Modulates the Expression of Cellular Iron-homeostatic Molecules in Normal Rat Kidney. J Histochem Cytochem 2018; 66(11):825-839.
https://doi.org/10.1369/0022155418782696
PMid:29873589 PMCid:PMC6213567
[25]. Carpenter TO, Pendrak ML, Anast CS. Metabolism of 25-hydroxyvitamin D in copper-laden rat: a model of Wilson’s disease. Am J Physiol 1988; 254(2 Pt 1):E150-154.
https://doi.org/10.1152/ajpendo.1988.254.2.E150
PMid:3348368
[26]. Hajimohammadi S, Gharibi S, Pourbarkhordar V, Mousavi SR, Salmani Izadi H. Acute poisoning of copper sulfate: a case report and review literature. Egypt J Intern Med 2022; 34(1):84.
https://doi.org/10.1186/s43162-022-00168-y
[27]. Sinkovic A, Strdin A, Svensek F. Severe acute copper sulphate poisoning: a case report. Arh Hig Rada Toksikol 2008; 59(1):31-35.
https://doi.org/10.2478/10004-1254-59-2008-1847
PMid:18407869
[28]. Ahmed AR, Vun-Sang S, Iqbal M. Therapeutic role of nitroglycerin against copper-nitrilotriacetate induced hepatic and renal damage. Hum Exp Toxicol 2022; 41:1-11.
https://doi.org/10.1177/09603271221131312
PMid:36305384
[29]. Ghonimi WAM, Alferah MAZ, Dahran N, El-Shetry ES. Hepatic and renal toxicity following the injection of copper oxide nanoparticles (CuO NPs) in mature male Westar rats: histochemical and caspase 3 immunohistochemical reactivities. Environ Sci Pollut Res Int 2022; 29(54):81923-81937.
https://doi.org/10.1007/s11356-022-21521-2
PMid:35739448 PMCid:PMC9605931
[30]. El Bialy BE, Hamouda RA, Abd Eldaim MA, et al. Comparative Toxicological Effects of Biologically and Chemically Synthesized Copper Oxide Nanoparticles on Mice. Int J Nanomedicine 2020; 15:3827-3842.
https://doi.org/10.2147/IJN.S241922
PMid:32581533 PMCid:PMC7269235
[31]. Al-Bairuty GA, Shaw BJ, Handy RD, Henry TB. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 2013; 126:104-115.
https://doi.org/10.1016/j.aquatox.2012.10.005
PMid:23174144
[32]. Ostaszewska T, Chojnacki M, Kamaszewski M, Sawosz-Chwalibóg E. Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environ Sci Pollut Res Int 2016; 23(2):1621-1633.
https://doi.org/10.1007/s11356-015-5391-9
PMid:26381783 PMCid:PMC4713450
[33]. Jian Z, Guo H, Liu H, et al. Oxidative stress, apoptosis and inflammatory responses involved in copper-induced pulmonary toxicity in mice. Aging (Albany NY) 2020; 12(17):16867-16886.
https://doi.org/10.18632/aging.103585
PMid:32952128 PMCid:PMC7521514
[34]. Cho WS, Duffin R, Poland CA, et al. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 2012; 6(1):22-35.
https://doi.org/10.3109/17435390.2011.552810
PMid:21332300
[35]. Abudayyak M, Guzel E, Özhan G. Cupric Oxide Nanoparticles Induce Cellular Toxicity in Liver and Intestine Cell Lines. Adv Pharm Bull 2020; 10(2):213-220.
https://doi.org/10.34172/apb.2020.025
PMid:32373489 PMCid:PMC7191231
[36]. Zhu S, Niu Y, Zhou W, et al. Mitochondrial copper overload promotes renal fibrosis via inhibiting pyruvate dehydrogenase activity. Cell Mol Life Sci 2024; 81(1):340. https://doi.org/10.1007/s00018-024-05358-1
PMid:39120696 PMCid:PMC11335263
[37]. Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int J Mol Sci 2024; 25(9).
https://doi.org/10.3390/ijms25094753
PMid:38731973 PMCid:PMC11084815
[38]. Weiss K, Schilsky M. Wilson Disease. In: Adam MP FJ, Mirzaa GM (ed). GeneReviews®. Seattle (WA): University of Washington; 1999.
[39]. Giri U, Iqbal M, Athar M. Copper-nitrilotriacetate (Cu-NTA) is a potent inducer of proliferative response both in liver and kidney but is a complete renal carcinogen. Int J Oncol 1999; 14(4):799-806.
https://doi.org/10.3892/ijo.14.4.799
PMid:10087332
[40]. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 2009; 23(7):1365-1371.
https://doi.org/10.1016/j.tiv.2009.08.005
PMid:19699289 PMCid:PMC2756312
[41]. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther 2022; 7(1):378.
https://doi.org/10.1038/s41392-022-01229-y
PMid:36414625 PMCid:PMC9681860
[42]. Wu H, Guo H, Liu H, et al. Copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating CHOP, JNK and caspase-12 signaling pathways. Ecotoxicol Environ Saf 2020; 191:110236.
https://doi.org/10.1016/j.ecoenv.2020.110236
PMid:32001424
[43]. Janssen R, de Brouwer B, von der Thüsen JH, Wouters EFM. Copper as the most likely pathogenic divergence factor between lung fibrosis and emphysema. Med Hypotheses 2018; 120:49-54.
https://doi.org/10.1016/j.mehy.2018.08.003
PMid:30220340
[44]. Johncilla M, Mitchell KA. Pathology of the liver in copper overload. Semin Liver Dis 2011; 31(3):239-244.
https://doi.org/10.1055/s-0031-1286055
PMid:21901654
[45]. Zischka H, Lichtmannegger J, Schmitt S, et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest 2011; 121(4):1508-1518. https://doi.org/10.1172/JCI45401
PMid:21364284 PMCid:PMC3068979
[46]. Manna P, Ghosh M, Ghosh J, Das J, Sil PC. Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology 2012; 6(1):1-21.
https://doi.org/10.3109/17435390.2011.552124
PMid:21319953
[47]. Kawai Y, Satoh T, Hibi D, et al. The effect of antioxidant on development of fibrosis by cisplatin in rats. J Pharmacol Sci 2009; 111(4):433-439.
https://doi.org/10.1254/jphs.09185FP
PMid:19966510
[48]. Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol 2008; 19(9):1741-1752.
https://doi.org/10.1681/ASN.2007060666
PMid:18525004 PMCid:PMC2518439
[49]. Khalil OA, Awad A, Abdelghany A, Ayoub M. The possible protective effect of alfacalcidol on cisplatin induced nephrotoxicity in adult male albino rats. A histological and immunohistochemical study. Egypt J Histol 2023; Articles in Press. https://doi.org/10.21608/ejh.2023.210152.1894
[50]. Zimmerman HJ. Copper poisoning. In: Zimmerman HJ (ed). Hepatotoxicity: the adverse effects of drugs and other chemicals on the liver. Philadelphia: Lippincott; 1999. 347.
[51]. Guo Y, Zhang T, Wang Y, Liu R, Chang M, Wang X. Effects of oral vitamin D supplementation on inflammatory bowel disease: a systematic review and meta-analysis. Food Funct 2021; 12(17):7588-7606.
https://doi.org/10.1039/D1FO00613D
PMid:34231596
[52]. Garland CF, Garland FC, Gorham ED, et al. The role of vitamin D in cancer prevention. Am J Public Health 2006; 96(2):252-261.
https://doi.org/10.2105/AJPH.2004.045260
PMid:16380576 PMCid:PMC1470481
[53]. Alatawi FS, Faridi UA, Alatawi MS. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats. Saudi Pharm J 2018; 26(8):1208-1213.
https://doi.org/10.1016/j.jsps.2018.07.012
PMid:30532641 PMCid:PMC6260496
[54]. Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacother 2018; 108:799-808.
https://doi.org/10.1016/j.biopha.2018.09.093
PMid:30253372
[55]. Abdelghany AH, Refaat B, Hassan AA, Abd  ElAziz M. The protective effects of Vitamin D against Cadmium-induced nephrotoxicity. Journal of Trace Elements and Minerals 2023; 6:100097.
https://doi.org/10.1016/j.jtemin.2023.100097
[56]. Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, et al. The effect of vitamin D supplementation on oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol Res 2019; 139:141-152.
https://doi.org/10.1016/j.phrs.2018.11.011
PMid:30447293
[57]. El-Boshy M, BaSalamah MA, Ahmad J, et al. Vitamin D protects against oxidative stress, inflammation and hepatorenal damage induced by acute paracetamol toxicity in rat. Free Radic Biol Med 2019; 141:310-321.
https://doi.org/10.1016/j.freeradbiomed.2019.06.030
PMid:31255668
[58]. Almasmoum H, Refaat B, Ghaith MM, et al. Protective effect of Vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat. Environ Toxicol Pharmacol 2019; 72:103246.
https://doi.org/10.1016/j.etap.2019.103246
PMid:31465891
[59]. Abdelghany AH, BaSalamah MA, Idris S, Ahmad J, Refaat B. The fibrolytic potentials of vitamin D and thymoquinone remedial therapies: insights from liver fibrosis established by CCl4 in rats. J Transl Med 2016; 14(1):281.
https://doi.org/10.1186/s12967-016-1040-4
PMid:27681697 PMCid:PMC5041560
[60]. Mohamed HK. Effect of Vitamin D on the Spleen of Adult Male Rats Fed on Diet with High Fat: A Histological and Immunohistochemical Study. Egypt J Histol 2019; 42(4):1001-1017.
https://doi.org/10.21608/ejh.2019.13030.1120
[61]. Yalcin A, Aydin H, Turk A, et al. Vitamin D: an effective way to combat methotrexate-induced testis injury. Medicine 2020; 9(4):998-1003.
https://doi.org/10.5455/medscience.2020.10.222
[62]. Parizadeh SM, Rezayi M, Jafarzadeh-Esfehani R, et al. Association of vitamin D status with liver and kidney disease: A systematic review of clinical trials, and cross-sectional and cohort studies. Int J Vitam Nutr Res 2021; 91(1-2):175-187.
https://doi.org/10.1024/0300-9831/a000540
PMid:30816821
[63]. Bai YJ, Li YM, Hu SM, et al. Vitamin D supplementation reduced blood inflammatory cytokines expression and improved graft function in kidney transplant recipients. Front Immunol 2023; 14:1152295.
https://doi.org/10.3389/fimmu.2023.1152295
PMid:37483634 PMCid:PMC10358325
[64]. Artaza JN, Norris KC. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol 2009; 200(2):207-221.
https://doi.org/10.1677/JOE-08-0241
PMid:19036760 PMCid:PMC3787314
[65]. Al-Daghri NM, Alfadul H, Kattak MNK, Yakout S. Vitamin D and its influence in circulating trace minerals among Arab adults with or without adequate vitamin D levels. Journal of King Saud University – Science 2022; 34(4):102012.
https://doi.org/10.1016/j.jksus.2022.102012
[66]. El-Boshy M, Refaat B, Almaimani RA, et al. Vitamin D(3) and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol 2020; 34(3):e22440.
https://doi.org/10.1002/jbt.22440
PMid:31926057
[67]. Habib M, Khalefa A, Alsemeh AE. Vitamin D3 protects against non-alcoholic fatty liver disease in rats by modulating hepatic iron deposition. Egypt J Histol 2023; 46(2):832-846.
https://doi.org/10.21608/ejh.2022.112442.1618

Cite this article: Miriam Ramzy Riad, Ahmed Abdelghany Hassan, Abdelghany Hassan Abdelghany. Copper Induced Hepatic Toxicity in Male Albino Rats and the Possible Protective Effect of Vitamin D. Int J Anat Res 2025;13(2):9245-9257. DOI: 10.16965/ijar.2025.162