Association Between Body Mass Index with Cognitive Function and Activities of Daily Living In Elderly: A Cross-Sectional Study

Samuel SE 1, Senapathi P 2, Shetty S *3.

1 Professor & Principal, Department of Community Medicine, A.J Institute of Medical Sciences & Research Centre, Mangalore, Karnataka, India.
2 Associate Professor, Department of Community Medicine, A.J Institute of Medical Sciences & Research Centre, Mangalore, Karnataka, India.
*3 Post graduate student, Department of Physiotherapy, Laxmi Memorial College of Physiotherapy, Mangalore, Karnataka, India.

ABSTRACT

Background: Higher BMI has been often attributed with decline in cognitive function, mortality, and morbidity in elderly. However, few studies have reported high BMI as protective towards cognition and Activities of Daily Living (ADL). Accurate quantification of the role of BMI in the incidence of cognition and performance is desirable in the face of the increasing prevalence of individuals with overweight and obesity and prolonged life span in the population. This study aimed to investigate the association of BMI with cognition and ADL in community living elderly.

Method: A cross sectional study was conducted among community living elderly. BMI and KATZ index scores were recorded from the respondents. Data were analyzed using SPSS version and a p value of less than 0.05 was considered statistically significant.

Results: A total of 53 respondents enrolled in this study and was predominated by (54.7%) males and (45.30%) females. Karl Pearson correlation coefficient test found a positive correlation (r= 0.33) between BMI and Cognition and was found to be statistically significant (p<0.05). Also, it was observed that moderately positive correlation exists between BMI and ADL (r =0.64) and was found to be statistically very highly significant (p<0.001)

Conclusion: This study concluded that among elderly, higher BMI values were associated with better performance in daily activities and lower cognitive impairment.

KEY WORDS: Elderly, Body mass index, Activities of Daily Living, Cognition.

Address for correspondence: : Dr. Shetty S, PT., Post graduate student, Department of Physiotherapy, Laxmi Memorial College of Physiotherapy, Mangalore, Karnataka, India.
E-Mail: shettyshraddha89@gmail.com
influencing neuropsychological and physical performance in older age to prevent deterioration and promote good functioning [2].

Cognitive ageing, though a natural process, can interfere in the individual’s functioning and quality of life[2,3]. Effective interventions have been proposed to prevent and optimize ageing related cognitive deterioration, considering protective factors such as cognitive training, physical activity, social engagement, and proper nutrition [4-6].

As physical and/or cognitive ability decreases in the elderly, care dependence arises to a point where an individual is no longer able to undertake the basic tasks that are necessary for daily life without the assistance of others [7]. The prevalence of dependence increases with age and is related to the presence of prior disease and fragility. Moreover, dependence relates to greater health and social resource utilization, more institutionalization, morbidity, and mortality, increasing overall health costs [8]. It must not be overlooked that dependence in the elderly is the main concern and cause of suffering and poor quality of life, and is significantly associated with suicide [9].

Apart from neuropsychological detriment, a disordered body composition is another expected significant ailment that comes along with age. Through the first 60 years of life weight gradually increases and thereafter it progressively decreases. Thus, even with a decrease in body weight, given a shortening of height, body mass index (BMI) is expected to increase between 1.5 and 2.5 kg/m2 in both men and women [10].

Whereas some studies report that higher BMI in elderly is associated to a better daily life functioning [11], other studies have found that underweight or obese elderly subjects and those who had gained weight had more limitations on their daily living activities in comparison to those with a normal BMI and those who maintained their weight [11,12].

In India the elderly account for 7% of the total population, of which two-thirds live in villages and nearly half of them in poor conditions. The elderly population in India increased from 20 million in 1951 to 57 million in 1991 and is expected to be 198 million in 206 and 326 million in 2050;33% are living below the poverty line, 90% from the unrecognized with no social security [13]. Elderly people from the middle- and higher-income group are prone to develop obesity and its related complication due to sedentary lifestyle [14].

Although obesity may also affect cognitive function, the underlying mechanism to which it leads to cognitive deficits remains unclear. Evidence has shown that obesity affect cognitive functions in different ways for different people based on their age group. Prior studies have reported that obesity in later life was associated with lower risk of cognitive impairment, whereas obesity in midlife was associated with higher risk of cognitive impairment. This contradictory finding is known as obesity paradox caused by reverse causation [15].

Another explanation, excess body weight provides more energy savings and a stronger inflammatory response that could benefit to encounter acute illness. Some evidence for neuroimaging studies showed higher BMI in dementia patients with Alzheimer’s disease (AD) was associated with greater volume of medial temporal cortex which indicates higher cognitive performance [16]. An additional explanation suggests that higher BMI in late-life individuals was associated with functional brain connectivity which served as a neuroprotection for cognition. Nevertheless, the exact mechanism by which obesity was less frequently associated with cognitive impairments remains unclear.

Although prior studies have associated BMI with cognition and daily performance of elderly, the results have been conflicting. As a result of the existing literature varies in association of BMI with cognition and activities of daily living, of note this association may vary depending on factors such as genetics, geographical areas, diet, culture and socio-economic reasons. Thus, this study aimed to evaluate association of BMI with...
cognition and activities of daily living in elderly residing in Southern India.

MATERIALS AND METHODS

A cross-sectional study was conducted among community living elderly referred by specialist for Physiotherapy, at selected tertiary care hospital in Southern India. Authorization and ethical approval were received from the Institutional Ethical Committee. Data was collected from 53 subjects (54% men and 45% women) out of 60 subjects. The eligibility criteria were Men and Women aged 65 years and above, apparently healthy, and the ability to understand the local language was included. Severely impaired visual/auditory acuity, immobilized elderly, neurodegenerative disorders, under psychotropic medications and living in palliative care or assisted care facility were excluded. All participants provided written consent on a locally translated informed consent forms.

Demographic data was collected including information about participants gender, previous occupation, age, education level, marital status, weight, and height. The World Health Organization (WHO) criteria for Asian population was used to classify the status of body composition. The participants BMI was calculated by dividing their weight in kg by their height in meters squared.

Participants were assessed for cognition using Montreal Cognitive Assessment Tool, where a score above 26 is normal. KATZ index of independence in ADL index tool (KATZ ADL) was used to screen for basic functional activities which consisted of six questions on physical functioning (bathing, dressing, toileting, feeding and continence) The possible score range of the ADL was 0-6 points, which was identified as dependent in at least one ADL (score 0-5) and independent in all ADL (score 6). Correlation of Cognition and Activities of daily living with BMI was estimated with Karl Pearson Coefficient test

Data was analyzed using SPSS 17.0 version for Windows and was depicted in number, percentage, correlation coefficient and p-value where less than 0.05 was considered statistically significant.

RESULTS

A total of 53 elderly were enrolled in this study. It was observed that the mean age of the study participants was 71.5±5.1 years. The minimum age was 65 years and maximum age was 86 years observed in this study. Majority of the study participants were males (57.7%) followed by (45.30%) females. (Fig.1).

Among the whole participants, low BMI was associated with higher risk of cognitive impairment when compared to normal and higher BMI was correlated with a lower risk of cognitive impairment. (Table 1 & Fig 2)

Based on ADL, KATZ index assessment scale, most of them were total independence (62.2%) followed by (37.73%) with moderate dependency.

Karl Pearson’s correlation coefficient test found weak positive correlation (r = 0.33) between BMI and Cognition assessed through MoCA scale and was found to be statistically significant (p<0.05). Also, it was observed that strong positive correlation exists between BMI and ADL (r =0.64) and was found to be statistically very highly significant (p<0.001) (Table 1 & Fig 3)

<table>
<thead>
<tr>
<th>BMI</th>
<th>MoCA</th>
<th>ADL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>0.332</td>
<td>0.644</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>0.017</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>53</td>
<td>53</td>
</tr>
</tbody>
</table>

Fig. 1: Gender wise distribution of participants.

Fig. 2: Correlation of Body Mass Index with MoCA.
DISCUSSION

Although prior studies have associated BMI with cognition, the results have been conflicting due to variability in geographical area, race, and other factors. Some studies showed high BMI in mid and late life is associated with a risk of developing cognitive impairment, but conversely the same is true for lower BMI measured in late life. However, the present study supports a clear association between BMI values and cognition.

In the present study, it demonstrated that cognitive impairment among elderly individuals in Southern India was affected by age and BMI. Elderly aged 65+ were positively associated with cognitive impairment, with high BMI could be a strong factor to predict better cognitive function. The study also showed that elderly individuals aged 65+ were more likely to have cognitive impairment. This finding is consistent with previous study. After performing the analysis between age and BMI, it was found that only higher BMI elderly individuals were significantly less likely to develop cognitive impairment. But, in contrast, two cohort studies from the western countries reported higher BMI with a higher risk of cognitive impairment, whereas the low BMI group did not have significant association [17,18]. This discrepancy may be due to different criteria used to classify BMI. In Asian population, obesity is defined as BMI greater than 25.0 kg/meter square according to WHO guidelines whereas in western countries it has been defined as more than 30 kg/meter square.

Our findings of lower BMI among the cognitive impaired supports the theory of obesity paradox reported by the few studies earlier [19]. Prospective studies so far from the American, Italian, and Korean elders have shown this association between lower BMI and less cognitive function or decline. A study on North Indian urban elderly reported a cognitive impairment prevalence rate of 8.8% [20]. In a comparable South Indian study on elderly aged 65 years and above, the prevalence was reported 11.5% [21]. Cognitive impairment in the present study was more among women compared with men. The difference in genders has been reported by several other studies earlier and attributed disadvantage among elderly women due to reduction in estrogen levels leading to greater cognitive decline than men [22]. However, the effect of our comparatively small sample size on the results cannot be ruled out. In late life it seems that being overweight and to a lesser extent obesity, is indicative of better health. The present study found that higher BMI related to better cognitive functioning.

Some previous studies suggest low BMI and some others suggest high BMI to be a risk factor for functional dependence [23,24]. Also, previous studies suggest that lower BMI is associated with better functional status [25]. Although in our study, we found a positive correlation between BMI and ADL. This is supported by another study from Ozturk GZ et al., it shows overweight and obesity is protective against ADL. High waist circumference (WC) not associated with poor physical performance and decline in ADL in Lisko et al. [26]. The combination of higher-level BMI and lower-level WC has been found to protect from the mortality in older adults; they also had a decreased likelihood of having decline in ADL. Another study found a similar correlation, LV YB et al. concluded that Higher BMI was associated with a lower risk of decline in ADL among Chinese adults aged 80 years and older [27].
Many studies have shown that sarcopenia, which is one of the main problems in elderly, is associated with the decline of muscle mass and strength and is a predictor of poor outcomes, including mortality, disability, and poor quality of life. Malnutrition and weight loss and the causes of sarcopenia which is associated with functional dependence in the elderly [28]. More attention should be paid on underweight, rather than the overweight or obesity for the prevention of decline in ADL after the age of 80 years. Accordingly, in our studies when BMI decreased, the ADL-performing ability decreased, possible because of the slowing down of the activity due to malnutrition or sarcopenia.

In the present study of 53 elderly people, 16 were categorized as underweight (30%), 27 were normal (50%) and 10 were of an overweight category (18%). The classification of BMI was based on WHO criteria for the Asian population [29]. Although a decline in cognitive and physical functioning is common in older adults, our results suggest that underweight category are the most vulnerable group. Thus, prevention as well as intervention programs must respond to the needs of this markedly vulnerable group. Being a cross-sectional study, no direction of the resulting association can be interfered. Underweight might be the cause or consequences of poor cognitive functioning and limited physical functioning, moreover all these factors might be influenced by other factors such as normal age-related deterioration and co-morbidities. Despite its limitations this study provided evidence of the association between disordered body composition, particularly an underweight BMI, and poor cognitive and physical functioning. This association was independent of sex and age. Further research, particularly in a longitudinal fashion, shall expand this cross-sectional study by exploring the long-term effects and the vulnerability factors of the association that were found.

Several limitations of this study should be considered. Firstly, the sample size was small. Second, this study disregards the other factors that might have caused impairment in cognition and activities of daily living. This might have influenced the results.

CONCLUSION
This study concluded that among elderly, higher BMI values were associated with better performance in daily activities and lower cognitive impairment.

Conflicts of interest: None

REFERENCES