A MORPHOMETRIC STUDY OF THE PROXIMAL END OF DRY ADULT FEMORA

Ishita Sengupta (Ghosh) 1, Madhumita Mahato 2, Gairik Sengupta *3, Jadab Chandra Chattopadhyay 4.

1 Assistant Professor, Dept of Anatomy, Medical College, Kolkata, India.
2 Senior Resident, Dept of Anatomy, Purulia Government Medical College & Hospital, Kolkata, India.
*3 Associate Professor, Dept of Pharmacology, Institute of Post Graduate Medical Education & Research, Kolkata, India.
4 Professor & Head, Dept of Anatomy, Medical College, Kolkata, India.

ABSTRACT

Background: A good understanding of morphometric measurements of the proximal femur is essential in order to decrease the risk of complications associated with orthopedic surgeries performed in the proximal femur due to traumatic injury, metabolic or vascular causes, and to achieve proper alignment of prosthesis to be implanted. The purpose of this study is to evaluate morphometry of neck of femur in Eastern Indian population.

Materials and Methods: The study was conducted on 50 dry adult femora [30 Right(R) and 20 Left(L)] available in the department of Anatomy of Medical College Kolkata, India.

Results: a) Mean and Standard Deviation (SD) of Vertical length of Head of femur was Right side: 38.56±2.50mm and Left side: 38.07±3.43mm. b) Mean and SD of Width of neck of femur was Right side: 28.84±2.71mm and Left side: 28.09±2.29mm. c) Mean and SD of length of Neck of femur on anterior aspect was Right side: 26.37±2.92mm and Left side: 26.12±3.42mm. d) Mean and SD of length of Neck of femur on posterior aspect was Right side: 31.65±2.75mm and Left side: 26.69±3.11mm. e) Neck-shaft angle on both sides were calculated.

Conclusion: Indian dimensions of proximal end of femur are different as compared to that of the values in other parts of the world. Present study will be useful for crafting suitable implants used for surgical correction of fracture neck femur in East Indian population.

KEYWORDS: Morphometry, Neck-shaft angle, Implant, Prosthesis, Width of neck, Vertical length of head of femur, Length of neck.

INTRODUCTION

The femur is the longest and strongest bone in the human body [1]. It endures the mechanical load of whole body. We stand erect on our lower limbs. Body weight is transmitted from pelvis to head, neck and upper end of femur. So the resultant force is transmitted through the proximal end of femur. Here lies the importance of our study. The architecture of different parts of femur changes after child
starts walking. It is very difficult to identify sex by individual femur bones. Generally male femur bones are longer, thicker and heavier than female counterparts.

Different studies have shown that values of parameters for different races are different because of different diet, heredity, weather and other environmental factors [2]. In India malnutrition (mainly calcium and vitamin D3 deficiency) plays major role in fracture. Fracture neck femur is quite common in old age especially senile and menopausal osteoporosis. Increasing population of senior citizens is due to benefits of modern medicine. The implants used for surgical treatment of femoral fractures include dynamic hip screws, cancellous screws, blade and plates, different types of prosthesis like Austin Moor, Thompson’s, Charnley’s, Muller’s prosthesis, unipolar and bipolar prosthesis etc [3].

In case of hip arthroplasty it is mandatory that the design and dimensions of femoral prosthesis should match with proximal femur. In case of ill-fitting prosthesis hip dislocation, implant fractures are common. But the implants available in the market are exclusively designed according to the western dimensions. The usage of these oversized implants adversely affects the functional end result of surgery [4].

Moreover not many studies are performed on morphometric analysis of proximal end of femur in Indian population. This study was thus carried out to define the morphometry of proximal end of femur in Eastern Indian population. This will help in modification of implant size for making prosthesis suitable for Eastern Indian population and in better choosing of prosthesis for better surgical outcome.

MATERIALS AND METHODS

The study was conducted on 50 dry adult femora from the anatomy department of Medical College Kolkata. Among the femurs 30 were of right side and 20 were of left side.

Exclusion Criteria: Grossly deformed bone, Fragmented or damaged bone, Bones with non prominent bony landmarks.

Instruments used are as follows: Digital Vernier Caliper (accuracy 0.01mm), Goniometer (accuracy 1 degree). All the lengths were measured using digital vernier caliper and neck-shaft angle was measured using goniometer.

The following parameters were recorded:

- **Vertical length of head of femur:** It is the vertical diameter of the femoral head measuring the straight distance between the highest and lowest point of the head[2]. (Fig.1)

- **Width of neck of femur:** It is measured at the narrowest part of femoral neck in supero-inferior direction[4]. (Fig.2)

- **Length of neck of femur on anterior aspect:** It is the distance between the base of the head and inter-trochanteric line. It is measured along a line perpendicular to the inter-trochanteric crest[4]. (Fig.3)
Length of neck of femur on posterior aspect:
It is the distance between the base of the head and inter trochanteric crest. It is measured along a line perpendicular to the inter trochanteric crest[4]. (Fig.4)

Neck-Shaft angle (NSA): It is the angle formed by neck axis and shaft axis of femur. This angle is also named as caput collum diaphysis (CCD) or cervico diaphysial angle[1][5]. (Fig.5)

Neck axis: It is the line drawn from the centre of the femoral head to the centre of the femoral neck at its narrowest part.

Shaft axis: It is the line drawn from the middle of the femoral condyles to the middle of the greater trochanter in two planes.

The mean NSA in adults ranges from 125º to 140º (on an average 135º). The NSA is widest at birth and diminishes gradually until the age of 10 years (Birkenmaier et al 2010).

RESULTS

Vertical length of head of femur: The vertical length of head of femur on right side ranged from 33.03-42.72mm with a mean of 38.56±2.50mm.

The vertical length of head of femur on left side ranged from 32.51-44.51mm with a mean of 38.07±3.43mm.

Width of Neck of femur: The mean width of neck of femur on right side was estimated to be 28.84±2.71mm with a range between 22.16-34.63mm.

The mean width of neck of femur on left side was estimated to be 28.09±2.29mm with a range between 24.46-32.88mm.

Length of neck of femur on anterior aspect:

The mean length of neck of femur on anterior aspect on right side was estimated to be 26.37±2.92mm with a range between 20.55-31.02mm.

The mean length of neck of femur on anterior aspect on left side was estimated to be 26.12±3.42mm with a range between 20.35-32.88mm.

Length of neck of femur on posterior aspect:

The mean length of neck of femur on posterior aspect on right side was estimated to be 31.65±2.75mm with a range between 25.99-37.84mm.

The mean length of neck of femur on posterior aspect on left side was estimated to be 29.69±3.11mm with a range between 23.97-35.98mm.

Neck-Shaft angle (NSA): The NSA of femur on right side ranged from 115º-138º with a mean of 124.53±6.35º.

The NSA of femur on right side ranged from 110º-140º with a mean of 124.53±6.35º.

The NSA of femur on right side ranged from 110º-140º with a mean of 126.9±7.67º.
Data recorded in the morphometric measurements of the proximal femur does not show any significant difference between mean values of either side (p>0.05, when compared by student’s t test; variables normally distributed as shown by Shapiro-Wilk test). Difference between such measurements in our study and that obtained in other studies are given below.

DISCUSSION

Previously many studies were performed regarding the various parameters of femur using different materials like dry bones, cadaveric specimens, plain radiographs, Computed Tomography (CT) scans and Magnetic Resonance Imaging (MRI) scans. Several quantitative anatomical studies of adult femora belonging to different races, culture and ethnic group have been carried out in different countries.

Vertical length of head of femur: The values of vertical length of head of femur in present study was less than that in most of the previous studies.

Width of Neck of femur: The value of width of neck of femur in present study was less than that obtained in other studies.

Neck-Shaft angle:

Comparison of Vertical length of Head of Femur

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Material for study</th>
<th>Sample size</th>
<th>Mean (in mm)</th>
<th>S.D.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taner Ziylan et al [8]</td>
<td>2002</td>
<td>Turkey</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>45.2 (R)</td>
<td>0.05(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Anuj et al [6]</td>
<td>2013</td>
<td>India</td>
<td>Dry bones</td>
<td>40(R)</td>
<td>45.22 (R)</td>
<td>1.87(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Present study</td>
<td>2018</td>
<td>India</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>38.56 (R)</td>
<td>2.59(R)</td>
<td><0.005(R)</td>
</tr>
</tbody>
</table>

Comparison of Length of Neck of femur on anterior aspect

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Material for study</th>
<th>Sample size</th>
<th>Mean (in mm)</th>
<th>S.D.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taner Ziylan et al [8]</td>
<td>2002</td>
<td>Turkey</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>30.70 (R)</td>
<td>3.69(R)</td>
<td><0.05(R)</td>
</tr>
<tr>
<td>Eduardo-Branco et al [9]</td>
<td>2010</td>
<td>Brazil</td>
<td>Radiographs</td>
<td>40(R)</td>
<td>30.96 (R)</td>
<td>2.79(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Muley Mrunal et al [6]</td>
<td>2017</td>
<td>India</td>
<td>Dry bones</td>
<td>72(R)</td>
<td>28.38 (R)</td>
<td>2.59(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Present study</td>
<td>2018</td>
<td>India</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>28.09 (R)</td>
<td>2.71(R)</td>
<td><0.005(R)</td>
</tr>
</tbody>
</table>

Comparison of Length of Neck of femur on anterior aspect with other studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Material for study</th>
<th>Sample size</th>
<th>Mean (in mm)</th>
<th>S.D.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eduardo-Branco et al [9]</td>
<td>2010</td>
<td>Brazil</td>
<td>Radiographs</td>
<td>40(R)</td>
<td>30.10 (R)</td>
<td>4.39(R)</td>
<td><0.05(R)</td>
</tr>
<tr>
<td>Osorio H et al [10]</td>
<td>2012</td>
<td>Chile</td>
<td>Dry bones</td>
<td>44 (R)</td>
<td>35.49 (R)</td>
<td>4.46(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Muley Mrunal et al [6]</td>
<td>2017</td>
<td>India</td>
<td>Dry bones</td>
<td>78(R)</td>
<td>34.96 (R)</td>
<td>7.59(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Present study</td>
<td>2018</td>
<td>India</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>26.12 (R)</td>
<td>2.92(R)</td>
<td><0.005(R)</td>
</tr>
</tbody>
</table>

Comparison of Length of Neck of femur on posterior aspect

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Material for study</th>
<th>Sample size</th>
<th>Mean (in mm)</th>
<th>S.D.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muley Mrunal et al [6]</td>
<td>2017</td>
<td>India</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>31.65 (R)</td>
<td>2.75(R)</td>
<td><0.005(R)</td>
</tr>
<tr>
<td>Present study</td>
<td>2018</td>
<td>India</td>
<td>Dry bones</td>
<td>20 (L)</td>
<td>29.60 (L)</td>
<td>3.12(R)</td>
<td><0.005(R)</td>
</tr>
</tbody>
</table>

Comparison of Length of Neck of femur on posterior aspect with other studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Material for study</th>
<th>Sample size</th>
<th>Mean (in mm)</th>
<th>S.D.</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muley Mrunal et al [6]</td>
<td>2017</td>
<td>India</td>
<td>Dry bones</td>
<td>78(R)</td>
<td>39.55 (R)</td>
<td>5.81(R)</td>
<td><0.05(R)</td>
</tr>
<tr>
<td>Present study</td>
<td>2018</td>
<td>India</td>
<td>Dry bones</td>
<td>30(R)</td>
<td>31.65 (R)</td>
<td>2.75(R)</td>
<td><0.005(R)</td>
</tr>
</tbody>
</table>

Neck-Shaft angle (NSA): The NSA of femur is widely variable between the populations of the two hemispheres. The value of NSA in present study was slightly more than that observed by P.F. Umbese [8] and Amith R et al [9] and less than PA Toogood [10] and HD Atkinson and in line with the study by Liang J.
Table 10: Comparison of NSA of femur with previous studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Material for study</th>
<th>Mean NSA (in degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Lequesne</td>
<td>2004</td>
<td>France</td>
<td>X-ray</td>
<td>132.8</td>
</tr>
<tr>
<td>PA Toogood [12]</td>
<td>2008</td>
<td>America</td>
<td>Dry bones-Digital photo</td>
<td>129.2</td>
</tr>
<tr>
<td>Amith R et al [14]</td>
<td>2016</td>
<td>India</td>
<td>Dry bones-Computer assisted</td>
<td>121.2</td>
</tr>
<tr>
<td>Present study</td>
<td>2018</td>
<td>India</td>
<td>Dry bones</td>
<td>Right-124.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Left-126.9</td>
</tr>
</tbody>
</table>

Significant difference, if any with the above-mentioned studies could not be determined due to lack of available data of mean and standard deviation in all of these studies.

CONCLUSION

In today’s era, where the average life expectancy is ever increasing, we are also faced with the responsibility of caring for an increasing proportion of the elderly. And as we all know, maintaining the mobility of such a person can improve both their physical & mental wellbeing, as desired once by the WHO definition of HEALTH.

The present study is aimed at adding to our existing knowledge of the morphometry of proximal end of femur and their variations across different populations, which may be relevant for:

1. Diagnosis of congenital & acquired pathologies of hip joint.
2. Designing prosthesis for hip replacement
3. Decreasing the risk of complications by allowing prognosis to be judged by the morphometry & biomechanics of the pelvic girdle & allowing proper and early rehabilitation.

Our study observed a significant difference existing between the morphometric measurements obtained in other studies in India and also in different parts of the world. Therefore, further studies with larger sample sizes belonging to different ethnic groups, races, cultures are required to minimize error in clinical decision making and interventions.

ABBREVIATIONS

R - Right, L - left,
NSA - Neck shaft angle, SD - Standard deviation

ACKNOWLEDGEMENTS

Department of Anatomy, Medical College, Kolkata, India.

Conflicts of Interests: None

REFERENCES

PMid:20950444 PMCid:PMC2972264
https://doi.org/10.16965/ijar.2017.167

How to cite this article: