International Journal of Anatomy and Research



Welcome to International Journal of Anatomy and Research

b2

 

b3

Type of Article : Original Research

Year: 2015 | Volume 3 | Issue 3 | Page No. 1216-1224

Date of Publication: 02-08-2015

DOI: http://dx.doi.org/10.16965/ijar.2015.190


EFFECT OF MOBILE PHONE RADIOFREQUENCY ON HIPPOCAMPAL CA3 NEURONS

Srinivas Rao Bolla.

Assistant Professor, Department of Anatomy, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia.

Address: Srinivas Rao Bolla, Assistant professor, Department of Anatomy, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia
E-Mail: bolla.srinivas@gmail.com

Abstract

Objective: The purpose of the study is to investigate the effects of mobile phone [MP] radiofrequency electromagnetic fields (RF-EMF) exposure for different durations on dendritic morphology and nerve cell damage in CA3 sub region of Hippocampus in Swiss albino mice.
Materials &Methods: Total 70 Swiss albino mice of both sexes were used in the study. Animals were divided into 10 groups randomly. Five groups (n=6) were used for assessment of neuronal damage by cresyl violet staining. Another five groups (n=8) were used for assessment of dendritic morphology by Golgi- Cox staining. Groups were divided by exposure duration (15, 30, 45 and 60 minutes/ per day for 30 days); age matched unexposed groups served as controls.  
Results: Results of the study have shown that there was decrease in the number of viable neurons and dendritic arborization in CA3 sub region of hippocampus in 30, 45 and 60 min exposed groups.
Conclusions: Increased neuronal damage and decreased dendritic arborization of hippocampal CA3 neurons was found with increase in exposure duration of MPRF-EMF.
KEY WORDS: Hippocampus, CA3, Dendritic arborization, Mobile Phone, Radiofrequency.

References

  1. ICT facts and Figures. Printed in February 2013. Available from: http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf#search=facts%20and%20figures
  2. Cardis E, Armstrong B K, Bowman J D, Giles G G, Hours M, Krewski D, et al. Risk of brain tumours in relation to estimated RF dose from mobile phones: results from five Interphone countries. Occup Environ Med. 2011; 68 (9):631-640.
  3. The INTERPHONE Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case–control study. Int. J. Epidemiol. 2010; 39(3): 675-694.
  4. Noor, N. A., Mohammed, H. S., Ahmed, N. A., & Radwan, N. M. Variations in amino acid neurotransmitters in some brain areas of adult and young male albino rats due to exposure to mobile phone radiation. Eur Rev Med Pharmacol Sci. 2011; 15(7), 729-742.
  5. Fragopoulou, A. F., Miltiadous, P., Stamatakis, A., Stylianopoulou, F., Koussoulakos, S. L., & Margaritis, L. H. Whole body exposure with GSM 900MHz affects spatial memory in mice. Pathophysiology. 2010;17(3), 179-187.
  6. Eberhardt, J. L., Persson, B. R., Brun, A. E., Salford, L. G., & Malmgren, L. O. Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med. 2008; 27(3), 215-229.
  7. Meral, I., Mert, H., Mert, N., Deger, Y., Yoruk, I., Yetkin, A., et al. Effects of 900-MHz electromagnetic field emitted from cellular phone on brain oxidative stress and some vitamin levels of guinea pigs. Brain Res. 2007; 1169, 120-124.
  8. Paulraj, R., & Behari, J. Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutat Res. 2006; 596(1-2), 76-80.
  9. Sampath Madhyastha., Somayaji, S.N., Rao, M.S., et al. Hippocampal brain amines in methotrexate-induced learning and memory deficit. Can.J.Physiol.Pharmacol. 2002; 80:1076-84.
  10. Shankaranarayana BS, Raju TR. The Golgi techniques for staining neurons. In Brain and behavior (Raju TR et al., eds). Bangalore, India: National Institute of Mental Health  and Neurosciences. 2004. p 108-111.
  11. Sholl DA, The organization of the cerebral cortex, Methuen, London, 1956.
  12. Scoville, W.B., Milner, B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957; 20:11–21.
  13. Squire, L.R., Zola-Morgan, S. The medial temporal lobe memory system. Science. 1991; 253:1380–86.
  14. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nat. Neurosci. 2000; 1:41–50.
  15. O’Keefe, J., Nadel, L. The hippocampus as a cognitive map. (eds.) Oxfrod University Press, London/New York. 1978.
  16. Morris, R.G., Garrud, P., Rawlins, J.N., O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982; 297:681–83.
  17. Moser, M.B., Moser, E.I. Functional differentiation in the hippocampus. Hippocampus. 1998;  8(6):608-19.
  18. Clark, RE., Zola, SM., Squire, LR. Impaired recognition memory in rats after damage to the hippocampus. J Neurosci. 2000;  20:8853-60.
  19. Kesner, R.P., Gilbert, P.E., Barua, L.A. The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav Neurosci. 2002;  116:286–90.
  20. Fortin, N.J., Agster, K.L., Eichenbaum, H.B. Critical role of the hippocampus in memory for sequences of events. Nat Neurosci. 2002; 5:458–62.
  21. Squire, L.R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992; 99(2):195-231.
  22. Barnes, AC. Spatial learning and memory process: the search for their neurobiological mechanisms in the rat. Trends Neurosci. 1988; 11: 163– 9.
  23. Swanson, L.W., Cowan, W.M. Autoradiographic studies of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol. 1977;  172:49– 84.
  24. Odaci, E., Bas, O., & Kaplan, S. Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study. Brain Res. 2008; 1238, 224-229.
  25. Sokolovic, D., Djindjic, B., Nikolic, J., Bjelakovic, G., Pavlovic, D., Kocic, G., et al. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res (Tokyo). 2008; 49(6), 579-586.
  26. Cooke M.S., Evans M.D., Dizdaroğlu M., Lunec, J. Oxidative DNA damage: mechanisms, mutation and disease. FASEB J. 2003; 17, 1195–1214.
  27. Zhao, T. Y., Zou, S. P., & Knapp, P. E. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci Lett. 2007; 412(1), 34-38.
  28. Leszczynski, D., Joenvaara, S., Reivinen, J., & Kuokka, R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation. 2002; 70(2-3), 120-129.
  29. Friedman, J., Kraus, S., Hauptman, Y., Schiff, Y., & Seger, R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007; 405(3), 559-568.
  30. Salford, L.G., Brun, A., Eberhardt, J., Persson, B. Permeability of the blood brain barrier induced by 915 MHz Electromagnetic radiation, continuous wave modulated at 8, 16, 50, 200 Hz. Bioelectroch, Bioener. 1993; 30: 293-301.
  31. Nittby, H., Brun, A., Eberhardt, J., Malmgren, L., Persson, B. R., & Salford, L. G.  Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 2009; 16(2-3), 103-112.
  32. Mausset, A. L., de Seze, R., Montpeyroux, F., & Privat, A. Effects of radiofrequency exposure on the GABAergic system in the rat cerebellum: clues from semi-quantitative immunohistochemistry. Brain Res. 2001; 912(1), 33-46.
  33. Ilhan, A., Gurel, A., Armutcu, F., Kamisli, S., Iraz, M., Akyol, O., et al. Ginkgo biloba prevents mobile phone-induced oxidative stress in rat brain. Clin Chim Acta. 2004; 340(1-2), 153-162.
  34. Brillaud, E., Piotrowski, A., & de Seze, R. Effect of an acute 900MHz GSM exposure on glia in the rat brain: a time-dependent study. Toxicology. 2007; 238(1), 23-33.
  35. Ammari, M., Brillaud, E., Gamez, C., Lecomte, A., Sakly, M., Abdelmelek, H., et al. Effect of a chronic GSM 900 MHz exposure on glia in the rat brain. Biomed Pharmacother. 2008; 62(4), 273-281.
  36. Bas, O., Odaci, E., Kaplan, S., Acer, N., Ucok, K., & Colakoglu, S. 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Res. 2009; 1265, 178-185.
  37. Bas, O., Odaci, E., Mollaoglu, H., Ucok, K., & Kaplan, S. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health. 2009; 25(6), 377-384.
  38. Frostscher, M. Mossy fibres form synapses with identified pyramidal basket cells in region of the guinea pig hippocampus: a combined Golgi electron microscope study, J. Neurocytol. 1985; 14, 249-259. 
  39. Ibata. Y., Desiraju, T., Pappas, G.D. Light and electron microscopic study of the projection of the medial septal nucleus to the hippocampus of the cat. Exp Neurol. 1971; 33(1):103-22.
  40. Shankaranarayana Rao B.S., Sunanda., Madhavi R., Meti B.L. and Raju, T.R. Restraint stress induced atrophy of apical dendrites of hippocampal CA3 neurons: reversal by rehabilitation. Proc. 38th Annual Conf. Indian Soc. Aerospace Med. 1997.
  41. Sunanda, Shankaranarayana Rao, B.S., and Raju, T.R. () Chronic restraint stress impairs acquisition and retention of spatial memory task in rats. Curr. Sci. 2000; 79, 101-104.
  42. Mausset-Bonnefont, A. L., Hirbec, H., Bonnefont, X., Privat, A., Vignon, J., & de Seze, R. (). Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis. 2004; 17(3), 445-454.
  43. Huang, C. T., Liu, P., Wu, H. X., Wang, J. L., & Wu, X. N. Effects of NMDA receptor expression in rat's hippocampus after exposure to 1800 MHz radiofrequency field. Zhonghua Yu Fang Yi Xue Za Zhi. 2006; 40(1), 21-24.
  44. Manikonda, P. K., Rajendra, P., Devendranath, D., Gunasekaran, B., Channakeshava, Aradhya, R. S., et al. Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett. 2007; 413(2), 145-149.
  45. Maskey, D., Kim, M., Aryal, B., Pradhan, J., Choi, I. Y., Park, K. S., et al. Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res. 2010; 1313, 232-241.
  46. Steele, R.J., Morris, R.G. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus. 1999; 9:118–136.
  47. Niell, C.M., Meyer. M.P., Smith, S.J. In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004; 7:254–260.
  48. Prithviraj, R., Inglis, F.M. Expression of the N-methyl-D-aspartate receptor subunit NR3B regulates dendrite morphogenesis in spinal motor neurons. Neuroscience. 2008; 155:145–153. 
  49. Sin, W.C., Haas, K., Ruthazer, E.S., Cline, H.T. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature. 002; 419:475–480.

 

Edward Ridyard. EFFECT OF MOBILE PHONE RADIOFREQUENCY ON HIPPOCAMPAL CA3 NEURONS. Int J Anat Res 2015;3(3):1216-1224. DOI: 10.16965/ijar.2015.190

b2



b3




Search

Volume 1 (2013)

Volume 2 (2014)

Volume 3 (2015)

Submit Manuscript